Regulation of ECF

Table of Contents

Vasopressin	
ADH Molecule	2
Vasopressin Receptors	2
Effects of Vasopressin	2
Metabolism	2
Control of Secretion	2
Clinical Implications	4
Summary Defence of Volume & Normal Osmolality	5
Renin Angiotension System	6
Regulation of Renin Secretion	
Angiotensinogen	
AT1	
ACE	
AT2 & It's Metabolism	
Actions of AT's	
Tissue Renin-Angiotensin Systems	
AT II Receptors	
Hormones of Heart & Other Natriuretic Factors	9
Structure	
Types	
Actions	
Receptors	
Secretion & Metabolism	
Na,K ATPase-Inhibiting Factor	
Defence of Specific Ionic Composition	11
Endocrine Functions of Kidney	12
Calcitriol	12
EPO	12
Sources	
Regulation of Secretion	
Franchica	

Vasopressin

- = function of vasopressin & thirst mechanisms
- total body osmolality \propto (total Na + total K) / total water
- ↑osmotic pressure in plasma ⇒ ↑vasopressin secretion + ↑thirst
- \downarrow osmotic plasma $\Rightarrow \downarrow$ vasopressin + excretion solute free urine
- .: osmolality kept 280-295 mOsm/kg of H20
 - →max inhibition vasopressin seen at <285; stim at higher values

ADH Molecule

- = 9aa peptide hormone
- aka ADH
- made in magnocellular neurons of supraoptic & paraventricular nuclei of hypothalamus
- transported in their axons to post pituitary where stored
- released via calcium dependant exocytosis

Vasopressin Receptors

- 3 receptors:
 - o V1a ⇒ smooth mm sustained vasoC, ↓renin secr, ↓glycogenlysis, platelet aggregation
 - V1b \Rightarrow ↑ACTH release
 - \hookrightarrow G₀-linked \rightarrow ↑PLC \Rightarrow ↑ IP3 + DAG \rightarrow ↑ intracellular [Ca]
 - $V2 \Rightarrow \uparrow cAMP$ levels $\Rightarrow \uparrow protein$ kinases
 - vasoD, ↑H20 reabsorption, ↑vWF & f8 from endothelial cells
 - \circ V3 = CNS (neurotransmitter)
- All G protein coupled

Effects of Vasopressin

- Vasopressin ⇒ concentrated hypertonic urine & Josmolality of plasma
- Without vasopressin ⇒ urine hypotonic & ↑osmolality of plasma

Renal ADH effects

- *V impt at physiological concentrations*
- \uparrow Water reabsorption (V₂ \Rightarrow aquaporin-2 from endosome \Rightarrow luminal membrane of principle cells).
- Synergism with aldosterone:
 - o Na reabsorb/K excretion
 - Principal cells of CCDs
- Mesangial contraction $\Rightarrow \downarrow GFR (V1a)$
- †urea reabsorption inner medullary CDs (aquaporin 3 into basolateral membrane)
- renal afferent vasoC V1

Non Renal ADH Effects

- *Less impt at physiological concentrations*
- Systemic vasoconstriction (V1a):
 - o effect on bp offset by \(\text{CO} \) via central affect (area postrema)
 - o coronary & cerebral vaosD maintained by NO mediated effect
- ↑ACTH release (V1b)
- ↑Cortisol release (V1a)
- Glycogenolysis (V1a) + lipolysis (↑ hormone sensitive lipase)
- neurotransmitter neuromodulation (V3)
- Coagulation: ↑ Factor 8 (V2) and ↑ platelet aggregation (V1)

Metabolism

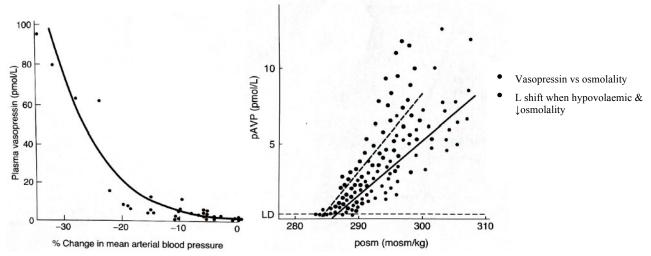
- circulating vasopressin rapid inactivated in liver & kidney
- half life 18mins

Control of Secretion

• 1 d secretion:

- o ↑osmotic pressure of plasma
 - osmoreceptors in anterior hypothalamus (OVLT & SFO ie outside BBB)
 - afferents to ADH secreting neurons
 - osmoreceptor system extremely sensitive mechanism for small ie 1-2% changes
 - ie when <2% change osmoreceptors activity > baroreceptors
- o ↓ECF volume
 - sensed by low pressure (more impt) & arterial baroreceptors
 - afferent to hypothalamus neurons
 - when >10% change volume: baroreceptor system activity > osmoreceptors
- o pain, stress, exercise
- o N&V
- Standing
- o ATII
- o Drugs eg Carbamazepine, morphine, barbituates, nicotine
- ↓ed secretion
 - ↓osmotic pressure of plasma
 - ↑ECF volume
 - o alcohol
 - o local negative feedback: ADH ⇒ intramedullary synthesis of PGs which interfere with ADH induced production of cAMP

Osmotic Stimuli


- >285 rate of discharge of neurons \uparrow s \Rightarrow \uparrow secretion
- osmoreceptors in ant hypothalamus:
 - o outside bbb, in OVLT
- thirst ?triggered by osmorecptors also
- delicate feedback system.
- 1% change in osmolality ⇒ big changes in level of vasopressin to keep at 285

Volume Effects

• inverse relationship between rate vasopressin secretion & level of stretch in vascular system causing afferent nerve discharge

 \rightarrow high stretch $\Rightarrow \downarrow$ vasopressin

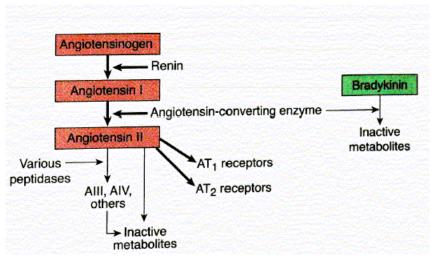
- vascular sensors
 - o low pressure great veins, RA, LA, pulmon vessels
 - o high pressure carotid sinus, aortic arch
- high pressure bp changes ⇒ big change in vasopressin secretion
- low pressure monitor fullness of system
 - o mod \(\) in blood volume can \(\) CVP with no effect on arterial bp
 - ∴: low pressure sensors primary sensors effecting volume related vasopressin
 - o afferents vagi to nucleus tractus solitarius (NTS)
 - NTS via inhibitory connection to CVLM
 - o CVLM via excitatory to hypothalamus
- ATII reinforces vasc stretch receptors by causing direct \u222vasopressin secretion

- Hypovolaemia and $\downarrow bp \Rightarrow \uparrow \uparrow vasopressin$
- Hypovolaemia \Rightarrow L shift with steeper curve

Clinical Implications

- SIADH -
 - Eg post surgery pain & hypovolaemia both $\Rightarrow \uparrow vasopressin \Rightarrow \downarrow plasma osmolality & dilutional$ hyponatraemia
 - o Also cerebral disease, lung disease, vasopressin secreting tumours
 - Vasopressin escape prolonged ↑vasopressin ⇒ down reg of aquaporin2 production
 - o Rx with Demeclocycline = Abx which ↓s renal response to vasopressin
- DI:
 - Central DI = Vasopressin deficiency
 - Tumour of hypothalamus 30%
 - Post traumatic 30%
 - Idiopathic 30%
 - Rest sarcoid, vasc lesions, infections
 - Nephrogenic DI = kidneys don't respond to vasopressin
 - V2 receptor X linked recessive mutation
 - Defective gene encoding aquaporin 2 trapped in intracellular locations
 - o Symptoms include polyuria & polydipsia

→need this to remain hydrated otherwise potentially fatal


Summary Defence of Volume & Normal **Osmolality**

- Osmolality = no of osmoles/kg water (not influenced by temp)
- ECF [Na] ~ 140 mmol/L:
 - o Na & Cl most active & abundant solutes present
 - o Cl just follows Na ∴ Na is the most impt
 - Na = 85% ECF osmolality
- Obligatory Water Loss =
 - \circ Minimum UO = 500ml/D
 - o Need to excrete daily solute load od ~700mosmoles at max conc 1400mmol/L
 - → (Na 100-150, K 70-100, Cl 150, urea 400, creatinine 12 mmol)
- Conditions $\Rightarrow \downarrow \downarrow$ osmolality ie max \downarrow ADH secretion \Rightarrow dilute urine osmolality \sim 30mosmoles/kg & UO ~22L/day to secrete daily solute load 700msomoles
- Osmolality feedback mechanism:
 - o ↑ osmolality (Small change 1-2% change from 280):
 - Ant HT sensing $\Rightarrow \uparrow$ ADH $\Rightarrow \uparrow$ AT2, \uparrow thirst, \uparrow aldosterone \Rightarrow
 - †Na & water reabsorb
 - afferent arteriole vasoC $\Rightarrow \downarrow$ GFR \Rightarrow restore ECF osmolality
 - o ↓osmolality:
 - \downarrow ADH, \uparrow ANP (\uparrow GFR) $\Rightarrow \uparrow$ Na & water excretion
- max urine conc capable = 1400mmol/L
- Volume ECF is determined by
 - o total osmotically active solute in ECF
 - Volume control mechanism
 - mechanism overrides osmotic regulation of vasopressin secretion
 - sensors less sensitive ie >10% changes
 - effect:
 - \(\tau\)volume \(\Rightarrow\)
 - ↓vasopressin
 - \uparrow ANP (atrial) & \uparrow BNP (brain) \Rightarrow diuresis

 $\rightarrow \Rightarrow \uparrow \text{Na}$ excretion by kidneys

- ↓volume ⇒
 - o ↑angiotensin II ⇒
 - VC
 - ↑aldosterone
 - †thirst
 - $\circ \downarrow bp \Rightarrow \downarrow glom\ cap\ pressure \Rightarrow \downarrow GFR \Rightarrow \downarrow Na\ filtered$
 - \downarrow mean intravascular pressure $\Rightarrow \uparrow$ aldosterone $\Rightarrow \uparrow$ Na reabsorbed
- in dehydration ⇒ moderate \ ECF by loss of water from intravascular & extracellular compartments
- disease states can cause marked loss of Na from ECF \Rightarrow shock:
 - o stool diarrhoea
 - o urine severe acidosis, adrenal insufficiency
 - o sweat heat+

Renin Angiotension System

- =acid protease (glycoprotein hormone)
- mw 37326
- secreted by kidney into bloodstream
- synthesised as preprorenin \Rightarrow prorenin \Rightarrow rennin

→non active

- active renin half life 80mins
- kidnev:
 - o active renin secreted by specialized cells (granular cells) = JG cells
 - o found in media of afferent arterioles as enter glomerulus
 - o renin found in membrane lined secretory granules
 - o cells also convert some prorenin to renin

→only place to do this

- o secretes some prorenin none converted systemically
- Renin also found in lacis cells
 - o Found junction between afferent/efferent arterioles
 - o Agranular
 - o ?significance of renin here
- prorenin also made in other organs eg ovaries

→after nephrectomy prorenin level normal BUT active renin zero

Note:

- Macula densa is close proximity to JG cells
- Juxtaglomerular appartatus =
 - o Macula densa
 - o Lacis cells
 - o JG cells

Regulation of Renin Secretion

- Main regulatory mechanisms:
 - Factors \(\gamma\) renin secretion (and opposite of factors which \(\perp\) renin release):
 - ↑SNS outflow
 - †circulating catecholamines
 - β_1 receptors on JG cells $\Rightarrow \uparrow$ cAMP $\Rightarrow \uparrow$ renin release
 - any cause of \post-ganglionic symp activity on kidney via renal nerves

- → ∴ MOA of BBs on controlling volume status & bp
- o Factors ↓renin secretion (opposite of above and...):
 - ↑Na & Cl reabsorb across macula densa
 - renin secretion inv∝ amount of Na & Cl entering distal tubule
 - enter mac densa via Na-K-2Cl transporter in apical membrane
 - ⇒ \renin secretion from adjacent JG cells
 - →?mediated by NO
 - \hookrightarrow Nb this is diff to TG Feedback (ie \uparrow Na \Rightarrow vasoC of afferent arteriole)
 - Baroreflex ie †afferent arteriolar pressure:
 - \uparrow MAP at JG cells $\Rightarrow \downarrow$ renin release
 - → via ↓post ganglionic symp activity via renal nerves
 - AT II direct action in JG cells ie -ve feedback loop
- Secondary mechanisms:
 - o ↑renin release:
 - prostaglandins
 - ↑plasma K level
 - linked to Ks effect on delivery of Na & Cl to macula densa
 - \renin release:
 - Vasopressin ?direct or indirect effect
 - ↑ANP
- Conditons which ↑renin secretion ie anything which ↓ECF, ↓MAP, ↑SNS
 - Na depletion
 - Diuretics
 - o ↓bp
 - o haemorrhage
 - o upright posture
 - dehvdration
 - o heart failure
 - o cirrhosis
 - o constriction of renal artery
 - o psych stimuli

Angiotensinogen

- synthesized in liver
- alpha glycoprotein (453 aa's) (13% CHO)
- circulating level is \text{\text{d} by:}
 - o glucocorticoids
 - thyroid hormones
 - o oestrogens
 - o cytokines
 - o AT II

AT1

- Decapeptide (10aas)
- Splite from N-terimal of angiotensinogen by renin's action
- Sole function is as a precursor of AT2

ACE

- ACE:
 - o AT I to AT II
 - o Inactivates bradykinin
- † tissue bradykinin produced when ACE is inhibited

 \rightarrow this acts on B2 receptors \Rightarrow cough in 20% of people on ACEI

- most ACE found in endothelial cells
- Most converting in lungs but other parts of body contribute
- ACE exists in 2 forms:
 - Somatic throughout body
 - o Germinal spermatogenic cells & spermatozoa
- Kidneys do not contain angiotensionogen & ACE
 - → ∴ AT2 can be fully produced in kidneys by itself
 - → ∴ kidneys influenced by blood borne & intrarenally produced AT2

AT2 & It's Metabolism

- =octapeptide
- Half life 1-2mins
- Removed from circulation by:
 - o Metabolised by various peptidases:
 - angiotensinase (Aminopeptidase) removes aspartic acid residue ⇒ AT III
 - AT III can be converted to AT IV
 - →both AT III & AT IV have some activity; other peptide fragments inactive
 - occurs in rbcs & many tissues
 - o trapping system in vascular beds of non-lung tissue

Actions of AT's

- AT1 precursor of AT2 ie no action
- ATII actions (via G_0 -linked receptors $\rightarrow \uparrow$ phospholipase C/IP3 $\rightarrow \uparrow$ Ca)
 - o Arteriolar VC ⇒ ↑systolic & diastolic bp
 - X4 more powerful vasoC than NA
 - VasoC activity decreased in:
 - Hyponatraemic patients
 - Cirrhosis

because ↑AT II found circulating ⇒ downregulate ATII receptors on smooth mm

- o ↑aldosterone direct action on Z Glomerulosa of adrenal cortex
- o ↓renin release: -ve feedback control
- o blockade of NA re-uptake (uptake 1) \Rightarrow ↑ active NA
 - direct action on postganglionic symp neurons
 - central effect on area postrema
- \circ \downarrow GFR contraction of mesangial cells
- o arteriolar effects:
 - [low concs] ⇒ selective afferent arteriolar constriction ie defend volume by ↓ing GFR [higher concs] \Rightarrow efferent constriction
- o ↑Na & HCO3 reabsorb
 - direct effect on PCT
 - indirect by \interstitial hydrostatic pressure
- ↓sensitivity of baroreflex ⇒ ↑pressor effect
- o activation of cicumventricular organs on brain (not cross bbb)
 - thirst
 - ↑ADH release
 - ↑ACTH release
- → remember:
- \circ area postraema \Rightarrow VC
- SFO & OVLT ⇒ polydipsia
- o ??organ ⇒ ↑vasopressin & ↑ACTH
- AT III same actions as AT2 but:
 - VasoC 40%
 - o ↑aldosterone 100% action ATII

Summary AT2 actions always results in:

• ↓RBF – afferent +/- efferent vasoC

- effect on GFR dependant on conc of AT2:
 - o low: same or slightly ↓ed
 - o high: ↓↓↓ (via mesangial & afferent arteriolar contraction)

Tissue Renin-Angiotensin Systems

- many tissues contain local indep renin-AT systems which generate ATII for local use →eg blood vessel walls, uterus, placenta, foetal membranes, eyes, heart, sex organs
- tissue renin contributes little/nothing to circulating renin pool
- local ATII ?role in:
 - o growth factor in heart & blood vessels

AT II Receptors

- are 2 classes of ATII receptors:
 - \circ AT₁
 - o AT₂
 - \hookrightarrow ATII has stronger affinity for AT₁

AT₁ Receptors

- = 7 transmembrane domains
- found on chromosome 3
- couple by G protein to phospholipase C
- ATII \Rightarrow (on AT₁)
 - o ↑free cytosolic Ca
 - o activates numerous tyrosine kinases
 - o in smooth mm: ↑caveolin-1
- regulation of AT₁ receptor depends on location:
 - o in arterioles \uparrow ATII $\Rightarrow \downarrow$ AT₁ receptor predominance
 - o in adrenal cortex \uparrow ATII $\Rightarrow \uparrow$ AT₁ receptor $\Rightarrow \uparrow$ sensitivity of gland $\Rightarrow \uparrow$ aldosterone release

AT₂ Receptors

- = 7 transmembrane domains
- found on chromosome X
- couple by G protein to various phophatases
- AT II \Rightarrow (on AT₂)
 - Antagonise growth effects
 - o Open K channels
 - ↑production of NO \Rightarrow ↑ing cGMP

→overall effects unsure but more receptors found in fetal & neonatal life

Hormones of Heart & Other Natriuretic Factors

Structure

- atria & ventricles contain secretory granules
- granules †in number when
 - o ↑NaCl intake
 - ↑ECF volume

Types

- from heart:
 - o ANP also found in other tissues
 - o BNP brain or beta NP
 - More present in heart (esp ventricles) than brain
 - o CNP-
 - Found in brain, kidney, pituitary, vascular endothelial cells

Very little in heart & circulation

→ ∴ paracrine regulator

Actions

- ANP & BNP act on kidney ⇒ overall ↑ in Na excretion
- Done by:
 - o Dilation afferent arterioles ⇒ ↑GFR
 - o Relax mesangial cells
 - Act on tubules $\Rightarrow \bot$ Na reabsorb
 - ↑cap permeability \Rightarrow extravastion of fluid into ECF $\Rightarrow \downarrow$ bp
 - o VD of arterioles & vennules

→CNP greater VD effect on veins than ANP/BNP

- ↓renin secretion
- o counteract pressor effects of catecholamines & ATII
- ANP in brain:

→BNP/CNP prob similar functions but unknown

- o General effects opposite to ATII
- Found in neurons connecting hypothalamus to brainstem concerned with regulation of CV system

 \rightarrow ANP $\Rightarrow \downarrow$ bp & excretion of Na

Receptors

- 3 natriuretic peptide receptors:
 - o NPR A
 - Guanylyl cyclase cytoplasmic domain
 - ANP greatest affinity
 - o NPR B
 - Guanylyl cyclase cytoplasmic domain
 - CNP greatest affinity
 - o NPR C
 - Binds all peptides
 - Truncated Guanylyl cyclase cytoplasmic domain
 - ?function
- All span cell membrane

Secretion & Metabolism

- ANP norm conc in plasma 5fmol/ml
- ANP
 - o half life short
 - o metabolised by neutral endopeptidase (NEP)
- ↑ANP secretion:
 - o ↑ECF volume
 - o atrial stretch

 \rightarrow also water immersion up to neck: removes gravity $\Rightarrow \uparrow CVP \Rightarrow \uparrow atrial$ stretch

- \ \ ANP secretion:
 - lie to stand $\Rightarrow \downarrow CVP$
- ↑BNP secretion:
 - o ventricle stretch

→ANP & BNP secretion ∝ to degree of stretch

Na,K ATPase-Inhibiting Factor

- = another natriuretic factor
- it inhibits Na,K ATPase $\Rightarrow \uparrow bp$
- may be ouabain from adrenal glands

Defence of Specific Ionic Composition

- certain ions in ECF under close control:
 - o Ca parathyroids, calcitonin secreting cells
 - o Mg mechanism incompletely understood
- Control of Na & K also depend on:
 - o H+ conc
 - o pH

Endocrine Functions of Kidney

- Hormones produced by kidney:
 - o 1,25 dihydroxycholecalciferol (active Vit D, aka calcitriol)
 - o Erythropoietin
 - o Prostaglandins
- Hormones produced in circulation as result of enzymes released by kidney:
 - o Angiotensin-2 + aldosterone production, initiated by renin released by kidneys
 - o Production of bradykinin in circulation, due to kallikrein from kidneys
- Hormones which have site of action **on** kidney:
 - o ADH
 - o Aldosterone
 - o Calcitriol
 - o PTH
 - o ANP

Calcitriol

- Creation of active form of vit D
- final step of activation
 - o 1-alpha hydroxylation occurs in cells of prox tubule
 - o reaction \(\)ed by:
 - catalysed by 1-alpha hydroxlase (mitochondrial enzyme)
 - ↑ed by PTH
 - ↑gonadal steroids
 - o reaction ↓ed by:
 - ↓ s-calcium or phosphate
 - †ed calcitriol ie –ve feedback loop
- function:
 - o †intestinal absorption of calcium & phosphate
 - o †tubular reabsorption of Ca
 - o ↑bone reabsorption of Ca & phosphate ie ↑serum Ca & PO4

EPO

- EPO = circulating glycoprotein
- Half life 5hours
- Takes 2-3days for †circulating rbcs

Sources

- mRNA found in liver & kidney
 - →EPO also found in spleen & salivary glands but no mRNA : not made there
- source from:
 - o 85% interstitial cells in peritubular cap bed of kidney
 - o 15% perivenous hepatocytes in liver
 - (\rightarrow) in fetus main production is the liver ie not from kidney)
 - o trace brain- protective effect from hypoxia
 - o trace uterus & oviducts \uparrow oestrogen $\Rightarrow \uparrow$ EPO \Rightarrow oestrogen dependant angiogenesis
- liver has little compensatory ability if kidneys removed ⇒ anaemia
- recombinant EPO made and can be injected
 - o autologous transfusions for surgery

o end stage renal failure

Regulation of Secretion

- ↑EPO:
 - o hypoxia:
 - main stimulus
 - O2 sensor in kidney & liver
 - Heme protein:
 - Deoxy form $\Rightarrow \uparrow EPO$
 - o Oxy form ⇒ inhibit transcription forming EPO mRNA
 - ↓rbc volume eg anaemia/haemorrhage
 - ↑androgens
 - o alkalosis eg high altititude
 - o catecholamines via β-adrenergic system
- ↓EPO:
 - o \red cell volume eg transfusion/polycythaemia

Function

- EPO marrow effects:
 - o committed stem cells \Rightarrow rbc precursors \Rightarrow mature erythrocytes
- EPO acts via membrane receptor =
 - o Linear protein
 - o Single transmembrane domain
 - o Cytokine receptor family
 - o Activates Tyrosine kinase ⇒ activates cytoplasmic transcription factors ⇒ nucleus ⇒ activate new m-RNA synthesis ⇒ inhibited apoptosis of red cells ⇒ ↑growth & development