3. Dynamics of Blood Flow

Table of Contents

Intro	2
Vessels	2
Vascular Smooth Muscle	2
Arteries & Arterioles	
Capillaries	2
Lymphatics	3
A/V Anastomoses	3
Venules & Veins	3
Angiogenesis	3
BioPhysics	4
Equations	
Flow, Pressure, Resistance	4
Laminar Flow	4
Shear Stress	5
Average Velocity	5
Flow & Radius	5
Viscosity & Resistance	5
Critical Closing Pressure	5
Law of Laplace	
Resistance & Capacitance Vessels	6
Systemic Circulation	
Velocity & Flow of Blood	
Arterial Pressure	
Gravity	
Bernoulli's Principle	
Auscultation	
Normal Blood Pressures	7
The Microcirculation	7
Filtration of Water	
Flow Limited vs Diffusion Limited Exchange	11
Activating Capillaries	12
Venous Return	12
Venous Pressure in Head	12
Air Embolism	12
Measuring Venous Pressure	13
Lymphatics	13
Interstitial Fluid Volume	
Fluid Volumos	

Intro

- Flow created by:
 - o Pumping of heart
 - o Diastolic recoil
 - Muscle pump
 - o -ve thorax pressure in resp
- Resistance to flow:
 - o Diameter of vessels
 - Viscosity
- Flow regulated by:
 - o Local chemical
 - o General neural & humoral mechanisms

Vessels

Vascular Smooth Muscle

- vital in regulating vessel diameter
- contraction produced by myosin light chain mechanism
- prolonged contraction determining tone produced by latch bridge mechanism
- calcium effects on contraction:
 - Ca influx via voltage gated Ca channel $\Rightarrow \uparrow Ca [in] \Rightarrow contraction$
 - Also ↑Ca [in] \Rightarrow ↑Ca release from SR via Ca sparks \Rightarrow ↑↑Ca [in] which interacts with β1 subunit on Ca activated K channels in cell membrane (BK channels) \Rightarrow BK opening \Rightarrow fast K efflux \Rightarrow \tag{membrane potential} \Rightarrow shutting of voltage Ca channels \Rightarrow relaxation

→neg feedback system for homeostasis

⇒sensitivity of β1 subunit to Ca sparks controls vascular tone

Arteries & Arterioles

- Out ⇒ in:
 - o Outer CT
 - o Adventitia
 - o External elastic lamina
 - o Middle layer smooth mm
 - o Media
 - o Intima:
 - Internal elastic lamina
 - Endothelium
- Large diameter arteries = \tag{elastic tissue}
- Arterioles = ↓elastic tissue; ↑↑smooth muscle
- Smooth mm in arterioles innervated:
 - \circ NA nerve fibres \Rightarrow VCs
 - \circ Cholinergic fibres \Rightarrow VD (only in some instances)

Capillaries

- Arterioles ⇒ metarterioles ⇒ capillaries
- Pre capillary sphincters

→not directly innervated BUT do respond to circulating VC substances

- Capillary diameter
 - o 5um artery end
 - o 9um venous end

→when dilated allow rbc through in single file

capillary walls 1cell thick (1um)

- transport across endothelium:
 - o junctions between cells:
 - in general permit molecules 10nm
 - brain tighter junction
 - intestine cytoplasm of cells themselves have fenestrations 20-100nm wide
 - liver sinusoidal capillaries 600-3000nm
 - o active vesicular transport
- pericytes:
 - o live around capillary ECs
 - o release vasoactive substances
 - o synthesise BM
 - o regulate flow inbetween ECs especially in presence of inflam

Lymphatics

- many valves
- no fenestrations
- open junctions between ECs

A/V Anastomoses

- seen in fingers, palms, ear lobes
- thick muscular walls
- innervated ++ by VC nerve fibers

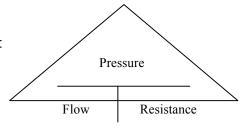
Venules & Veins

• little smooth mm

 \hookrightarrow but NA nerves and circulating VCs (eg endothelins) \Rightarrow VC

• valves from folded intima of limb veins

→not present in v small veins, great veins, veins from brain & viscera


Angiogenesis

VEGF vital


BioPhysics

Equations

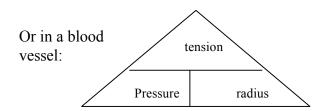
- Ohms:
- Flow (mL/s), pressure (mmHg), resistance (R unit):

- Shear stress = viscocity x shear rate
- Velocity, flow, area:

• Poiseuille-Hagen Formula

$$R = 8 \text{ x viscocity x length}$$

$$\frac{\pi \text{ x r}^4}{}$$


• Reynolds Number:

$$Re = \underbrace{2rvd}_{n}$$

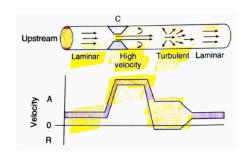
$$n = \underbrace{r = radius}_{v = velocity}$$

$$d = density}_{n = viscocity}$$

• Law of laplace:

- pulse pressure = systolic diastolic pressure
- mean pressure = diastolic pressure + 1/3 of pulse pressure

Flow, Pressure, Resistance


- flow = pressure / resistance
- Pressure = mean intraluminal pressure at arterial end pressure at venous end

Laminar Flow

- Velocity is greatest in center of stream
- Laminar flow occurs up to critical velocity ⇒ turbulent flow
- †Probability of turbulence related to
 - ↑velocity
 - o ↓diameter as will cause ↑velocity
 - ↓viscosity eg anaemia
- Re number = probability of turbulence

$$\hookrightarrow$$
 < 2000 = no turbulence

>3000 = nearly always turbulent

Shear Stress

- Shear stress = viscosity x shear rate
- ↑shear stress ⇒ marked change in gene expression by EC eg VCAM-1, TGF-B, endothelin 1

Average Velocity

- velocity = flow / area of conduit
- rules:

→works same in system of parallel tubes

Flow & Radius

Laminar Flow

• poiseuille-Hagen Formula:

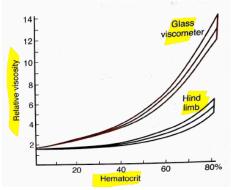
$$R = 8 \text{ x viscocity x length}$$

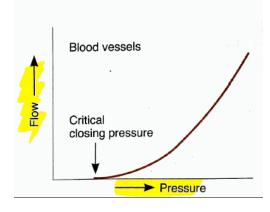
∴ ↑ blood flow & \resistance to radius 4

- o flow through vessel: doubled by \$19\% radius
- o resistance in vessel: decr to 6% of original with radius x2

Turbulent Flow

• equation:


$$\frac{\text{density x length}}{\pi \text{ x r}^5}$$


Viscosity & Resistance

- resistance to flow determined by:
 - o radius (most)
 - o viscosity
- viscosity depends mostly on haematocrit ie % volume of blood occupied by rbcs

→also on composition of plasma & resistance of rbcs to deformation

- in vivo effect of viscosity different to poiseuille-Hagen formula:
 - o large vessels ↑haematocrit ⇒ ↑↑viscosity
 - o small vessels <100um haematocrit small effect as cells flow in single file through capillary anyway
 - ∴ haematocrit only effects resistance in extremes eg anaemia or polycythaemia

Critical Closing Pressure

 \downarrow ing pressure small blood vessel – will get to a point where no blood flows even though pressure > 0→= critical closing pressure

Law of Laplace

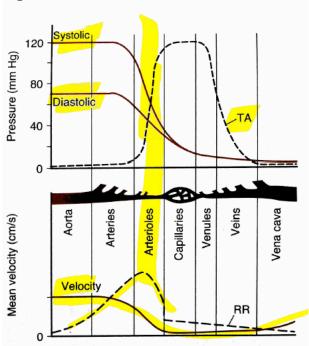
Tension in wall of cylinder is equal to the product of transmural pressure & the radius divided by wall thickness:

Tension = Pressure x radius

Wall thickness

- Transmural pressure = pressure inside cylinder pressure outside
 - →but pressure outside body is low so pressure inside can simply be used
- : law can be changed to:

Pressure = tension


Radius

- ∴ \radius of blood vessel, the \tension required to balance distending pressure
- demonstrates problems with dilated hearts:
 - o \radius of vent chamber means \tension required to generate any pressure

Resistance & Capacitance Vessels

- veins normal state is collapsed
 - \hookrightarrow : large amount of blood added to veins before they distend & \(\gamma\)volume \Rightarrow \(\gamma\)pressure
- arterioles = resistance vessels
- veins = capacitance vessels
- Vasodilation/-constriction: refers to arterioles (ie chief site of vascular resistance) $\rightarrow \downarrow \uparrow SVR$
- Venodilation/-constriction: refers to veins (ie the capacitance vessels) $\rightarrow \uparrow \downarrow VR$
- distribution:
 - o 65% veins (55% in supine)
 - o 15% central blood volume (25% in supine) heart & lungs
 - o 13% arteries
 - o 2% arterioles
 - o 5% capillaries

Systemic Circulation

TA = total area

RR = relativeresistance

Velocity & Flow of Blood

- proximal aorta flow:
 - o phasic forwards and backwards (too close aortic valve)
- other vessels flow is continuous due to elastic recoil of vessels

→but still pulsatile – otherwise gradual ↑in resistance

Arterial Pressure

- pulse pressure = systolic diastolic pressure
- mean pressure = diastolic pressure + 1/3 of pulse pressure

Gravity

- pressure in vessels below heart ↑ed & above is ↓ed
- gravity = 0.77mmHg/cm difference

Bernoulli's Principle

- sum of the kinetic energy of flow and the potential energy is constant:
 - o pressure drop due to energy lost when overcoming resistance is lost as heat
 - o pressure drop due to potential energy conversion to kinetic energy in narrow vessel is reversed when narrowing passed

 \rightarrow greater velocity of flow $\Rightarrow \downarrow$ ed lateral pressure distending its walls

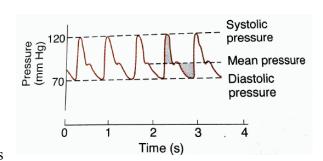
 \rightarrow : narrowed vessels \Rightarrow \uparrow velocity \Rightarrow \downarrow distending pressure

∴ narrowed atherosclerotic plaque is self sustaining

Auscultation

- Kororkoff sounds produced by turbulent flow caused by narrowing of vessel ⇒ >critical velocity
- Diastolic pressure correlates best when sound becomes muffled in
 - Post exercise
 - Children
 - \circ AR
 - Hyperthyroid

→otherwise when turbulent flow ceased.


- Cuff near systolic pressure only intermittent high velocity jets through vessel at peak systole
- Cuff near diastolic pressure = constricted vessel ⇒ continuous turbulent flow

Normal Blood Pressures

- Sleep $\Rightarrow \downarrow 20$ mmHg
- Pulse pressure \(\)s with age diastolic pressure \(\)s at middle age as arteries become stiff

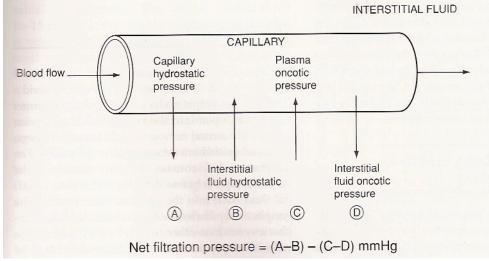
The Microcirculation

- By definition =
 - Smallest arterioles
 - Metarterioles
 - o Precapillary sphincters
 - Capillaries
 - o Small venules
- ~25 billion capillaries in body
- many are closed for long periods ie skeletal mm
 - $\rightarrow \sim 1/4$ open at ret ie recruited when needed
- skin has AV shunts for specialised functions (temp control)
 - → : does not contribute to gas exchange and waste product removal
- cap flow is intermittent due to regular contraction/relax of precapillary sphincters
 - → called vasomotion
 - \rightarrow local hypoxia = most impt factor \Rightarrow spincter relaxation

Function of Microcirculation

- systemic capillaries contain \sim 5% blood volume in close contact with tissue cells : function =
 - o transfer/exchange of water, electrolytes, gases, nutrients, wastes & heat

Capillary Pressure & Flow


Capillaries are short but blood moves v slow as large cross sectional area \rightarrow transit time art to ven end = 1-2sec

Equilibration with Interstitial Fluid

- Transfer/exchange across capillary wall:
 - o Non water movement:
 - Electrolytes & other small molecules cross via pores & intracellular gaps
 - Lipid soluble (incl O2 & CO2) cross directly through thin endothelium
 - Proteins & other larger molecules diff to cross membrane:
 - Pinocytosis OR
 - Endo/exocytosis
 - o Water:
 - Diffusion:
 - Large amount (~80 000 litres/day) ie much larger than daily CO of ~8000/d
 - Occurs in both directions & does **not** = any net water movement across cap wall → cos in norm conditions no osmotic gradient across cap wall
 - Filtration see notes below

Filtration of Water

- Separate to diffusion being actually ultrafiltration (plasma proteins do not cross)
- Ultrafiltration occurs due to balance of:
 - Hydrostatic pressure
 - Osmotic pressure
 - → aka Starling forces & net movmt of water can be predicted using Starling's equation

- Depends on balance:
 - Hydrostatic pressure gradient
 - = Pressure in capillary (P_c) pressure in interstitial fluid (P_i)
 - o Osmotic pressure gradient:
 - = osmotic pressure in capillary (π_c) osmotic pressure of interstitial fluid (π_l)
- pressures vary:
 - o by tissue
 - o along length of capillary NET movement:
 - outward arterial end
 - inward venous end

Net driving pressure = $\alpha [(P_c - P_i) - (\pi_c - \pi_I)]$

- 2 more additional factors added:
 - \circ reflection coefficient (σ) = leakiness for proteins
 - o filtration coefficient (K) = leakiness for water

=
$$K \times [(P_c - P_i) - \sigma(\pi_c - \pi_I)]$$

Reflection coefficient (σ)

- = correction factor applies to measured oncotic pressure gradient across cap wall
- needed to correct equation:
 - o because of small leakage of proteins : π_I = would otherwise be artificially high
 - o not all protein present in capillary is effective at exerting an oncotic pressure \therefore π_c would otherwise be artificially high
 - → : both factors \actual oncotic pressure gradient
- value is from 0 to 1 depending on tissue:
 - o CSF & Kidney (glomerular filtrate): both have v low proteins \therefore $\sigma =$ close to 1
 - Liver: \therefore σ = closer to 0 because of:
 - v high protein amount
 - proteins pass through very leaky hepatic sinusoids easily

Filtration Coefficient (K)

- net fluid flux due to filtration is proportional to NET driving pressure
- K = constant of proportionality in the flux equation
- K depends on 2 components:
 - o Area of capillary walls
 - o Permeability of capillary walls to water (aka hydraulic conductivity)
 - \hookrightarrow : K = area x hydraulic conductivity
- Eg leaky capillary would have high K

NET Fluid Flux

Complete equation:

=
$$K \times \Delta P$$

= $K \times [\Delta P_{\text{hydrostatic}} - \sigma \cdot \Delta \pi]$
= $K \times [(P_c - P_i) - \sigma(\pi_c - \pi_I)]$

Typical Starling Values (CVS Capillaries)

	Arteriolar end	venous end
P_c	25mmHg	10
P _c P _i	0	0
(P_{total})	(25)	(10)
π_c	<mark>20</mark>	20
π_{I}	5	5
(π_{total})	(20)	(20)
net filtration P	+10	-5

- Along length of cap only pressure that drops is hydrostatic pressure
- Body as a whole:
 - NET ultrafilration of ~ 20 ml/min \Rightarrow
 - 18ml/min reabsorbed by capillaries

- 2ml/min removed by lymph ie 2-4litres /day into lymph
- Starling equation limited value in practise as needs measurement of 6 unknowns
- .: more useful to describe NET fluid movement in diff capillary beds

Kidney (glomerulus) Starling Forces:

- o In Glomerulus (ie GFR) NET excess ~ 180litres/day
- → different lies in reabsorption in kidney tubules
- Glomerula specifics:
 - o High K
 - \circ High $\sigma \sim 1.0$
 - o P_c is high and does not drop much along the length of the capillary.
 - o σ_c increases along the length of the capillary (large fluid loss (concentration proteins) + high σ_c initially).
 - This \tag{ed} capillary oncotic pressure is important for the reabsorption of water into the proximal tubule from the peritubular capillaries
 - \circ : = NET outward filtration pressure along whole length of glom capillary

	Aff. Art end	Eff art end
P_{GC}	45mmHg	45
$egin{aligned} \mathbf{P}_{\mathrm{GC}} \ \mathbf{P}_{\mathrm{BC}} \end{aligned}$	10	10
π_{GC}	20	35
π_{BC}	0	0
Net filtration P	15	0

(GC = glomerular capillary

BC = Bowman's capsule

Hhydrostatic pressure in the glomerular capillary is affected by the balance b/w afferent and efferent arteriolar tone.)

$$\therefore$$
 GFR = K x ($P_{GC} - P_{BC} - \pi_{GC}$)

Cerebral Microcirculation

- most body capillaries are
 - o permeable to low mw solutes (ie Na & Cl)
 - o impermeable to high mw solutes (aka proteins) (depending on their σ).
 - ∴ it is the large protein solutes which exert an osmotic force across cap wall
 - ie there is a differential inside to outside capillary
- in cerebral capillaries the cap membrane:
 - o relatively impermeable to all solutes incl low mw solutes eg Na & Cl
- : low mw solutes exert an osmotic force across cerebral capillary membrane (ie BBB)
- : starling forces in cerebral caps =
 - o hydrostatic pressure
 - o osmotic pressure (not oncotic) due to effective solutes
- oncotic pressure is small in comparison to huge osmotic pressure exerted by low mw solutes
 - → because number and not size is important

→ aka colligative properties

→ other colligative properties = SVp depression, boiling point elevation, freezing point depression

• small leak of these solutes can also be accounted for with a reflection coefficient

→ same as for plasma protein elsewhere

• 1 mOsmole ↑osmotic pressure gradient blood:brain interstitial fluid ⇒ force 17-20mmHg

Pulmonary Microcirculation

- main function is gas exchange
- features that assist with gas exchange:
 - o pulmon capillaries & alveoli have v thin walls
 - o large SA for exchange: capillaries in the alveolar walls are seen as a continuous film of flow
 - o low pressure pulmon circuit ∴ very low resistance (but pressure sufficient to perfuse apical lung (West zone 2)

Starling forces in the lung:

	Arteriolar end	venous end
P_c	13 mmHg	6
P_{i}	0 – slight neg	0-neg
$\pi_{ m c}$	25	25
$\pi_{ m I}$	17	17

- oncotic gradient:
 - o reflection coefficient (σ) is low = ~ 0.5
 - o allowing for σ NET oncotic gradient is small \Rightarrow favour reabsorption
- hydrostatic pressure:
 - o capillaries in lung
 - = intra-alveolar vessels:
 - .: cap vessel pressure exposed to alveolar pressure

 \rightarrow = average of zero

- varies with gravity:
 - †pressure @base : apex
 - pressure diff equivalent to height static water column from base to apex (~23mmHg)
- quickly affected by change in pulmon artery pressure & LAP

⊔not much buffering

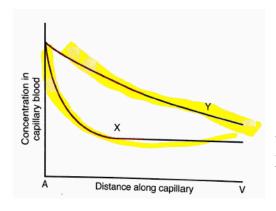
- o alveolar interstitium:
 - slight –ve pressures
 - closer to hilum: interstitial pressure †ingly negative

→ this favours flow of fluid from interstitium into pulmon lymphatics

• : overall under norm conditions small NET outward flow of fluid

 \rightarrow this = pulmonary lymph flow = \sim 10-20ml/hr

• NET fluid movement outward (into interstitium) should be bad for gas exchange ie pulmon oedema


→ but mechanisms exist to prevent it – (see resp notes 4 blood flow end of section)

Flow Limited vs Diffusion Limited Exchange

- flow limited exchange =
 - o small molecules equilibrate near arteriolar end

∴: to ↑total diffusion need to ↑flow

- diffusion limited exchange =
 - o substances don't reach equilibrium during passage through tissues

Y = diffusion limited X = flow limited exchange

Activating Capillaries

- capillaries activate by VD of precapillary sphincters & metaarterioles:
 - o VD metabolites
 - o \tag{permeability noxious stimuli. Effected by:
 - substance P
 - bradykinin & histamine

Venous Pressure & Flow

- CVP ~5mmHg
- Gravity has greater effect on venous pressure than art pressure
- Velocity of flow ↑'s as blood from venules to greater veins

→av 10cm/sec

Venous Return

- Aided by:
 - Inspiration
 - intrathoracic pressure \Rightarrow -2.5 to -6 mmHg

→CVP inspiration 2mmHg; expiration 6mmHg

→this drop aids venous return

- diaphragm descends $\Rightarrow \uparrow$ intrabdo pressure $\Rightarrow \uparrow VR$ as valves prevent backflow to LL
- o ventricular ejection ⇒ pulling of tricuspid valve down ⇒ sucking of blood into RA

→venous flow is pulsatile near heart

 \rightarrow 1 peak = vent systole

2nd peak = rapid vent filling in early diastole

- o Muscle pump:
 - Quiet standing venous pressure @ ankle 80-90mmHg
 - Contractions of leg mm ⇒ pressure @ ankle ↓30mmHg

→even if incompetent valves still see benefit as resistance less in larger veins ie proximally

Venous Pressure in Head

- Dural sinuses have rigid walls : no critical closing pressure
- In standing pressure in them is subatmospheric

⇒pressure ∝ to distance above collapsed neck veins (top head ~ -10mmHg)

Air Embolism

- Disturbs forward movement of blood as air is compressible
- Surface tension of air bubble ⇒ ↑↑resistance to flow
- Rx hyperbaric oxygen \s size of gas emboli

• 5-100mls lethal

Measuring Venous Pressure

- mean pressure vein in ACF = 7.1; CVP ~5mmHg
- convert mm Saline to mm Hg by dividing by 13.6
- CVP:
 - o Increased by:
 - Positive pressure breathing
 - Straining
 - Expansion of blood volume
 - Heart failure
 - o Decreased:
 - -ve pressure breathing
 - shock

Lymphatics

- in capillaries normally efflux > influx
- remainder into lymph
- 24hr lymph flow/day 2-4L
- lymph divided:
 - o initial lymphatics:
 - no valves or smooth mm
 - in intestine & skeletal mm
 - fluid enters through loose junctions between ECs
 - flow created by mm pump & artery pulsations
 - o collecting lymphatics:
 - have valves & smooth mm
 - have own peristalsis
 - flow also aided by:
 - mm pump
 - -ve intrathoracic pressure inspiration
 - suction effect high velocity blood in veins which lymph drains into
- 25-50% of total circulating plasma protein filtered and returned to blood via lymph

Interstitial Fluid Volume

- cause of \(\)ed volume & oedema:
 - ↑filtration pressure:
 - venular constriction
 - ↑ed venous pressure ie
 - failure,
 - incompetent valves,
 - vein obstruction,
 - hypervoleamia salt & water retention
 - ↓osmotic pressure gradient
 - ↓plasma protein cirrhosis, nephrosis
 - accumulation osmotically active substance in interstitium
 - o ↑cap permeability:
 - substance P
 - histamine, kinins
 - o inadequate lymph flow
- Exercising mm:
 - \circ \uparrow cap pressure so higher than oncotic pressure through whole cap \Rightarrow efflux

- $\begin{array}{l} \circ \ \ osmotically \ active \ metabolite \ accumulates \ in \ interstitium \Rightarrow efflux \\ \circ \ \ lymph \ flow \ cannot \ keep \ up \end{array}$
- →∴ mm volume may ↑up 25%

Fluid Volumes

• see chp 1 physiology notes