4.CVS Regulation

Table of Contents

IntroductionPhysics Reminder	
Local Control of CVS Vasodilator Metabolites Local Vasoconstriction Other Substances Effecting VD/VC	2 3
Neural Control of CVS	3
Receptors & The Afferent Limb	5 6
Central Integration Central Centres	
Efferent Limb	10 10 10 11
Summary Factors Effecting HR	
Direct Effects on RVLM	
Valsalva ManoeuvreAbnormal Valsalva's	
Substances Released from Endothelium Prostacyclin & Thromboxane A2 Nitric Oxide Endothelin Other Functions of Endothelins	14 15 15
Systemic Regulation by Hormones Kinins Natriuretic Hormones Circulating VCs	16

Introduction

- Different levels of control of circ:
 - Local control caters for specific organs
 - o Central control caters for whole body putting brain first
 - Systemic Regulation by Hormones
- Generally there is a hierarchy in these control levels

Physics Reminder

$$Q = \frac{\Delta P}{R}$$
 (Ohm's law)

(MAP - RAP)Thus, for the whole circulation: $CO = \overline{SVR}$

⇒ for a specific organ (simple):
$$Q_{organ} = \frac{(P_a - P_v)}{R_{organ}}$$
 where $P_a = MAP$

⇒ for an organ where a *Starling resistor* applies:
$$Q_{organ} = \frac{(P_a - larger of P_v/3^{rd} P)}{R_{organ}}$$

- The different mechanisms that control the circulation (whether whole body or individual organ) will influence either ΔP or R.
- Remember factors that determine resistance (R):

From Poiseuille's flow equation, resistance:
$$R = \frac{8 \, \eta \, L}{\pi r^4}$$

$$\frac{8 \, \eta \, L}{L = \text{length}}$$

$$r = \text{radius of tube}$$

$$NB \text{ power of 4 effect...}$$

→ above applies for *laminar* flow in *rigid* tubes, be it blood, air, urine etc...

Local Control of CVS

- Aka autoregulation
- Autoregulation consists of:
 - o Pressure autoreg:
 - \uparrow pressure $\Rightarrow \uparrow$ distension of walls $\Rightarrow \uparrow$ contraction of vasc smooth mm

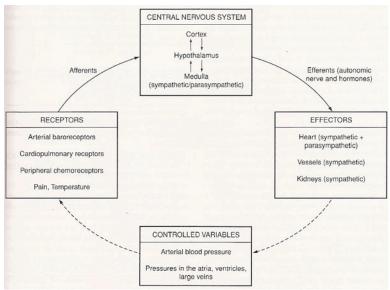
Law of Laplace – wall tension ∝ distending pressure x radius

 \rightarrow : maintenance of a specific wall tension: if pressure \(\)s requires a \(\) in radius

- o Metabolic reg:
 - \downarrow blood flow $\Rightarrow \uparrow$ Metabolites accumulate $\Rightarrow \uparrow$ VD
 - \uparrow blood flow $\Rightarrow \bot$ metabolite $\Rightarrow \uparrow$ VC

Vasodilator Metabolites

- causes of VD:
 - \circ \downarrow O2 tension:
 - \uparrow hypoxia inducible factor 1α (HIF 1α) \Rightarrow VD gene expression
 - o ↓pH
 - o ↑pCO2 most pronounced in brain & skin
 - o ↑temp
 - \uparrow k+ causes hyperpolarization of smooth mm \Rightarrow VD
 - o lactate
 - o adenosine in cardiac muscle only


Local Vasoconstriction

- causes of VC:
 - o injury to vessels– 2nd to local release of serotonin from activated platelets →veins constrict weakest as least smooth mm
 - o ↓temp

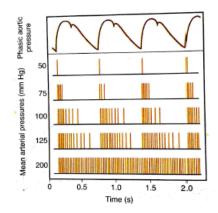
Other Substances Effecting VD/VC

- independent VDs:
 - o Adenosine
 - o ANP
 - o Histamine via H1 & H2
 - o Bradykinin
 - Vasoactive intestinal peptide (VIP)
- Independent VCs:
 - o Ach
 - o Substance P

Neural Control of CVS

Receptors & The Afferent Limb

- Various variables are measured:
 - o Baroreceptors Arterial bp
 - o Cardiopulmonary Receptors
 - o Periph chemoreceptors –temp & chemical changes
 - o Others:
 - Periph nociceptors pain
 - Stretch lung receptors
 - Activity mechanoreceptors

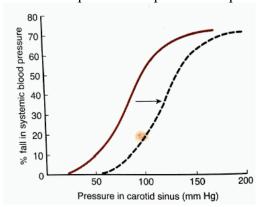

Arterial Baroreceptors

- = stretch receptors
- found in:
 - carotid sinus
 - just off origin of internal carotid in adventitia
 - carotid sinus nerve (branch of IX)
 - o aortic arch

- aortic depressor nerve (branch of X)
- transverse aortic arch
- in adventitia
- stretch stimulates receptors ⇒ impulse to medulla release +ve glutamate onto nucleus of the tractus solitarius (NTS).
- $NTS \Rightarrow$
 - o +ve Glutamate on caudal ventrolateral medulla (CVLM) ⇒ ↑PNS output
 - \circ -ve GABA on RVLM ⇒ \downarrow SNS output
- \rightarrow :. \forage baroreceptor \Rightarrow \left\ \text{symp & \forage parasymp output ie } \left\ CO & \left\ SVR \Rightarrow \left\ \text{bp}
- baroreceptors much better at vasoC than venoC

Firing Activity

- Receptors †sensitivity to pulsatile pressure than constant pressure
 - \rightarrow drop in pulse pressure (ie narrowing) with no change in MAP $\Rightarrow \downarrow$ s rate of receptor discharge $\Rightarrow \uparrow bp \& \uparrow hR$


- MAP thresholds for firing: 60mmHg to 200mmHg
- Each baroreceptor neuron fires over a narrow pressure range but collectively cover wide range:
 - o C fibres higher threshold
 - Myelinated A fibres = lower threshold ie more sensitive to low pressures

Receptor Resetting

- Baroreceptor mechanism is reset in chronic HTN
- ? due to opening of K channels \Rightarrow return of membrane potential to baseline
- Resetting occurs rapidly in animals and is rapidly reversible
 - ∴ thought baroreceptor reflex responsible for changes in HR and bp on lying/standing →opposite to long term regulation of bp = balance of fluid in/out ie volume regulation

→ shows importance of renal function in bp control

- If remove baroreceptors:
 - o Rapid rise in bp but mean pressure then drifts back to norm

Cardiopulmonary Receptors

- 3 main groups:
 - Veno-Atrial Stretch Receptors
 - aka low P or volume receptors
 - Myelinated
 - vagal
 - Cardiac mechanoreceptors
 - Unmyelinated
 - Vagal & symp
 - o Central Chemosensitive fibres:
 - Vagal & symp
- If stimulated as a group:
 - NET inhibitory effect: reflex brady & vasoD $\Rightarrow \bot bp$
 - \rightarrow = Bezold Jarisch reflex may see in Acute MI
- If stim individually == diff CVS effects

Veno-Atrial Stretch Receptors

- Located in endocardium @ junction vena cava & pulmon vein with atrium
- Two types:
 - 0 A
 - discharge in atrial systole ie with 'a' wave
 - \circ B -
 - d/c in late diastole/atrial filling ie with 'v' wave
 - give info to CNS of degree of distension of atrial walls ie CVP
- stim of both receptors \Rightarrow
 - o immediate: ↑HR via ↑SNS to SAN
 - o late: ↑urine volume & Na excretion ⇒ ↓bp
 - → via Bainbridge effect:
 - o ↓ADH
 - o ↓renal SNS activity ie RAAS
 - ↑atrial ANP production
- → ∴ main function of Veno-Atrial stretch Rs = regulate cardiac size when CVP high

Cardiac Mechanoreceptors

- =unmyelinated vagal & symp receptors
- fine network endocardium of:
 - o RA & LA only some fire at height of atrial filling with insp
 - LV fire during vent contraction
- Combined effect is JHR & vasoD
 - → similar function to arterial baroreceptors
 - → loss of afferent input from either art baroreceptors or cardiac mechanorecptors no sig effect on bp BUT loss of BOTH \Rightarrow sustained \uparrow bp
- vasovagal syncope:
 - \downarrow VR and dehydration $\Rightarrow \downarrow$ baroreceptors $\Rightarrow \uparrow$ symp HR & SV \Rightarrow vigorous vent contractions against empty ventricle $\Rightarrow \uparrow$ activation vent baroreceptor \Rightarrow further \downarrow bp & \downarrow SV \Rightarrow syncope

Central Chemosensitive Fibres

- vagal & sympathetic
- in heart
- stim by products from ischaemic heart mm
- symp ones implicated in pain cardiac ischaemia
- convergence with somatic pathways in spinothalamic tract explains referred pain into neck/arms

Periph Chemoreceptor Reflex

- found in carotid & aortic bodies
- very important in respiration (same receptors)
- have v high rate flow
- activated by
 - o ↓PaO2
 - o ↑PaCO2
 - \circ \downarrow pH only in carotid bodies
 - ↓blood flow to receptors:
 - stagnant flow 2^{nd} to $\downarrow MAP$
- result of activation:
 - o resp: ↑ventilation main
 - o direct CVS effects = ↑bp & ↓HR
 - but indirect NET effect is that the ↓HR is offset by ventilatory stim ie
 - o stim of insp neurons

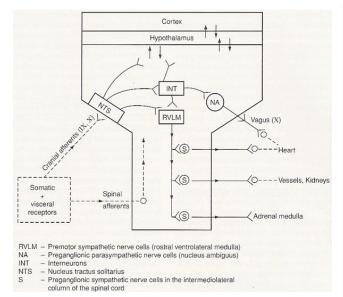
inhibits central PNS cells

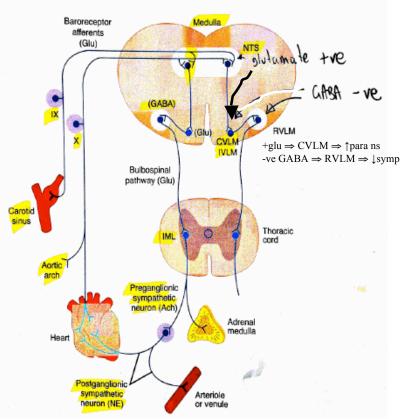
o stim of lung stretch receptors

 $\hookrightarrow \Rightarrow \uparrow HR$

- o Mayer waves:
 - Slow reg oscillations (every 20-40secs) in blood pressure during hypotension
 - Created as \downarrow blood flow \Rightarrow hypoxia \Rightarrow \uparrow receptor $d/c \Rightarrow \uparrow bp \Rightarrow \uparrow blood flow <math>\Rightarrow \downarrow$ receptor d/c and cycle
- periph chemoreceptors vital in correcting MAPs <60mmHg

(→ NB arterial baroreceptors don't fire <60mmHg)


• periph chemoreceptor action explains clinical response to \perp bp of tachypnoea & tachycardia


Other Receptors

- Many other sensations ⇒ reflex CVS responses:
 - Somatic pain $\rightarrow \uparrow bp + \uparrow HR$
 - Severe visceral pain→ ↓HR + ↓bp
 - Bladder distension $\rightarrow \uparrow HR + \uparrow bp$
 - o Cold→ ↑bp
 - o Threatening sight/sound → ↑HR, ↑ contractility, ↑ SVR

 \rightarrow = diving response - sometimes used to try terminate SVT's

Central Integration

Central Centres

- Central neuronal axis group of cells in various locations with a lot if integrated central processing:
 - o Medulla most impt. Where 'vasomotor centre' exists
 - o NTS
 - o Cerebellum
 - Cerebral Cortex
 - Midbrain Periaqueductal grey (PAG)
 - Hypothalamus
 - Limbic system
 - → all control autonomic efferent limb
- Afferent limb fed back via NTS
- Central processing of afferent info in medulla & higher centres ⇒ modulation of medullary SNS & PNS neurons ⇒ altered balance SNS vs PNS autonomic output

Medulla & Spinal Cord Cells

- In medulla:
 - Premotor symp nerves
 - o Preganglionic parasymp nerves
 - o Medullary interneurons
- In spinal cord (intermediolateral column):
 - o Preganglionic symp neurons

1. Central Sympathetic Output

Premotor Sympathetic Nerves

- 5 groups of cells which innervate preganglionic outflow to all symp ganglia in medulla:
 - o RVLM most impt in control of MAP aka vasomotor area
 - o RVMM (rostral ventromedial medulla)

- o Caudal raphe nuclei
- o Paraventricular nucleus in hypothalamus
- o A5 noradrenergic cell in caudal ventrlateral pons
- Rostral ventrolateral medulla (RVLM)
 - Are +ve (excitatory) premotor fibres
 - o Output to symp preganglionic cells in spinal column intermediolateral gray column (IML)
 - o RVLM neurons are:
 - tonically active
 - responsible for resting SNS output to CVS
 - → ∴ maintain CO & SVR at rest
 - Afferent input into RVLM arrive from:
 - Afferents from baroreceptors ⇒ -ve on RVLM
 - Carotid & aortic chemoreceptors ⇒ +ve on RVLM
 - Direct +ve stimulation by Co2, hypoxia
 - Area postrema (lacks bbb):
 - · Vascular area on dorsum of medulla
 - Circulating angiotensin can directly stim RVLM $\Rightarrow \uparrow$ MAP
 - Other input:
 - Cerebral cortex:
 - Limbic cortex via hypothalamus \Rightarrow ↑bp & ↑HR caused by emotions
 - Reticular formation pain ⇒ +ve on RVLM
 - Somatic afferents somatosympathetic reflex from exercising mm ⇒ +ve on RVLM

Sympathetic Preganglionic Cells in Spinal Cord

- Most symp preganglionic cells are in IML columns of Tx & Upper Lx segments
- Ach = neuro-transmitted at ganglia
- Have specificity for diff organ circulations
 - → but symp ganglia & adrenal medullar are innervated from multiple cord segments

2. Central Parasympathetic Output

- Situated in
 - o nucleus ambiguous (NA)
 - o dorsal motor nucleus of vagus nerve
- stim:
 - o baroreceptor via NTS ⇒ discharge in synchrony with cardiac cycle
 - o direct input from medullary inspiratory neurons \Rightarrow \text{output of NA} \Rightarrow tachycardia of inspiration (sinus arrhythmia)

3. Nucleus Tractus Solitarius (NTS)

- located in dorsomedial medulla
- = principle site of termination of:
 - o primary CVS afferents CN IX (carotid sinus) & X (aortic arch))
 - o 2nd order afferents from other visceral & somatic receptors
- also receives input from higher centres which likely modulates output response
- = a gateway & relay station to:
 - o spinal cord
 - o medulla
 - hypothalamus
 - o cerebral cortex
- Role:
 - If ablated \Rightarrow sustained HTN
 - ↑ed Afferent baroreceptor ⇒
 - stim NA \Rightarrow ↑PNS output to heart

stim CVLM \Rightarrow inhibition of RVLM $\Rightarrow \downarrow$ SNS output to heart, kidney, vessels & adrenal medulla

4. Cerebellum

- involved in regulation of CVS response to mm & joint activities in exercise
- input from:
 - o cortex
 - o brainstem via extrapyramidal tracts & vestibular system
 - o ascending pathways via spinocerebellar tracts (dorsal & ventral)

5. Midbrain Periagueductal Grey (PAG)

- roles in:
 - o antinociception & reaction to threat
 - o defence reaction ie ↑bp, skeletal mm vasoD & renal vasoC
- different areas of PAG have diff actions:
 - o lateral ⇒ pressure response ie vasoC
 - o ventrolateral ⇒ depressor effects ie vasoD
- · connects with RVLM

6. Hypothalamus

- imp in general homeostasis
- discrete cell groups:
 - o defense area (short term control)
 - ant perifornical region
 - ↑HR, ↑CO, ↑bp, vasoD skeletal mm, vasoC GIT & renal vessels, rage/fear behaviour
 - inhibits the baroreflex at NTS, inhibits vagal output, stim the RVLM $\Rightarrow \uparrow$ SNS>PNS output
 - o depressor area: (short term control)
 - anterior hypothalamus
 - effects similar to baroreflex
 - o supraoptic & paraventricular nuclei: (longer term control)
 - ant hypothalamus
 - produce ADH in response to:
 - stim of local osmoreceptors
 - input from art baroreflex
 - o temp regulating area:
 - ant hypothalamus

7. Limbic System

- consists of:
 - o ant cingulate
 - o post orbital gyrus
 - o hippocampus
 - o amygdala
- amygdala stimulates hypothalamus defence area ⇒ fear/rage
- limbic may be responsible for playing dead behaviour in animals in danger

8. Cerebral Cortex

- role in rapid CVS changes at beginning of ex ie \PNS output
- connections into:
 - o amygdala
 - o hypothalamus
 - o RVLM
 - o NTS

Efferent Limb

- Pathway consists of:
 - o Vagus
 - o SNS
 - o Hormones:
 - Adrenaline & Noradrenaline
 - ADH
 - Renin, angiotensin
 - Atrial natriuretic factor (ANF)
- Effectors:
 - o Heart
 - Blood veseels
 - Kidneys
 - Thirst/water intake

Innervation of Blood Vessels

• Symph NA fibres \Rightarrow all vessels \Rightarrow VC

→have background tonic activity

• Symp cholinergic fibres \Rightarrow skeletal muscle \Rightarrow VD

→no tonic activity

• ∴ In most tissues VD is mediated by ↓symp NA activity

in skeletal mm active VD by symp cholinergic system

Neural Regulatory Mechanisms

- All vessels receive motor fibres from SNS except capillaries & venules
- Fibres to resistance vessels (arterioles) regulate flow & resistance (::pressure)
- Fibres to capacitance vessels vary volume of blood stored

Output Effects

SNS & Adrenaline & NA

- Heart: \uparrow contractility & \uparrow HR $\Rightarrow \uparrow$ CO
- Arterioles: $vasoC \Rightarrow \uparrow SVR$
- Veins: venoC \Rightarrow \uparrow VR \Rightarrow \uparrow CO (switch volume to art side of circuit)
- SNS:
 - o renin release from juxtaglomerular apparatus (JGA) of kidney \Rightarrow renin-angiotensin-aldosterone activation \Rightarrow H20 & Salt retention
 - o angiotensin 2:
 - potent vasoC:
 - direct on periph vessels
 - indirect \forall SNS via area postrema of medulla
 - stimulates thirst & \uparrow ADH \Rightarrow H20 retention $\Rightarrow \uparrow$ MAP

Vagal

- effects limited to heart
- mainly AVN/SAN/atria

ADH

- made in hypothalamus by supra-optic & paraventricular nuclei
- stored & released from ost pituitary
- effects:
 - o H20 retention
 - o Arteriolar constriction

ANF

• Released from atria in response to distension/stretch

• Effects = \(\text{renal salt & H20 excretion (Bainbridge response)} \)

Balance of Output

- tonic activity:
 - o mild amount symp
 - o larger amount parasymp
 - if both blocked HR ~100/min

Summary Factors Effecting HR

- In general stim which \(\text{\text{HR}} \) also \(\text{\text{bp}} \) except:
 - Atrial stretch receptor ⇒ ↓bp & ↑HR
 - \circ ↑ICP \Rightarrow ↑bp & ↓HR
- ↑HR by:
 - ↓arterial baroreceptor activity
 - o †atrial stretch receptor activity
 - o inspiration inhibition of nucleus ambigious ⇒ ↓PNS:SNS output
 - o excitement, anger pain
 - o hypoxia
 - o exercise
 - o thyroid hormones
 - o fever
- ↓HR by:
 - o †arterial baroreceptors
 - o expiration
 - o fear, grief
 - o ↑ICP

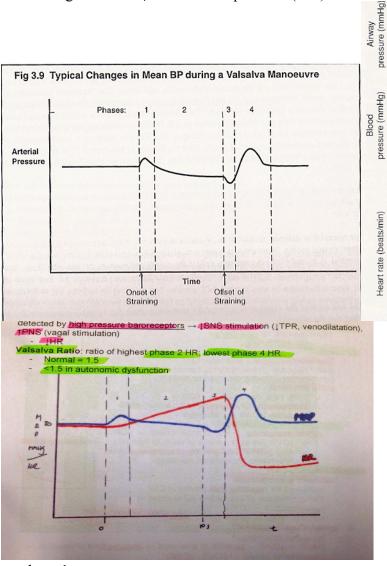
Direct Effects on RVLM

Cushing Reflex

- \uparrow ICP $\Rightarrow \downarrow$ blood supply to RVLM \Rightarrow local hypoxia and hypercapnia $\Rightarrow \uparrow$ RVLM d/c $\Rightarrow \uparrow$ bp \Rightarrow restores blood flow to medulla
- \uparrow in bp $\Rightarrow \uparrow$ baroreceptor d/c $\Rightarrow \downarrow$ HR which masks expected \uparrow HR
- \uparrow in bp \propto to \uparrow ICP
 - \rightarrow Cushing reflex

Hypercapnia

- ↑PaCo2 ⇒
 - ↑RVLM d/c (↑HR, VC)
 o direct peripheral VD
 ∴ periph & central actions cancel each other so no VD or VC with slow rise in bp via HR effect
- moderate $\uparrow RR \Rightarrow \downarrow \downarrow PaCo2 \Rightarrow$ cutaneous & cerebral VC


→little change in bp

Valsalva Manoeuvre

- = forced expiration against closed airway (glottis, mouth, nose, ETT doesn't matter)
- standardised valsalva = blowing into mercury column & holding a pressure of 40mmHg for 10-15secs
- clinical use testing baroreflex & autonomic ns:
 - o autonomic function eg diabetes
 - o reversal of SVT
 - o Ax of cardiac murmurs:
 - ↑loudness in HOCM & MV prolapse
 - ↓loudness all other murmurs

Phases of Valsalva

• defining feature is \intrathoracic pressure (ITP)

- phase 1:
 - o small brief \(^\text{bp}\) at start of straining:
 - 2 reasons:
 - ↑ITP squeezes intrapulmonary vessels ⇒ ↑VR to L heart ⇒ ↑SV & ↑CO ⇒ brief small ↑MAP

120

110 100

90

130

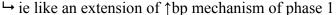
110 100

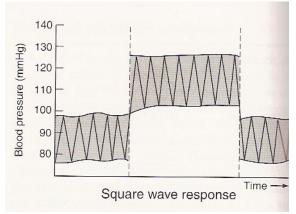
> 90 80 70

60

- †ITP transmitted onto aorta
- HR unchanged
- Phase 2:
 - o Early phase:
 - Dropping bp: ↓VR due to ongoing ↑ITP & ↓ing CO
 - Middle phase:
 - ↑HR:
 - ↓bp is sensed by baroreceptors ⇒ ↓afferent activity ⇒ ↑SNS & ↓PNS ⇒ ↑HR & ↑contractility & ↑SVR
 - → :. ↑CO & ↑SVR help to counteract effect of ↓VR and defend bp
 - o Late phase: In normal healthy: MAP usually rises > baseline due to alpha adrenergic activation
 - o Pulse pressure narrows through phase—due to \uparrow SVR via SNS activity $\Rightarrow \uparrow$ diastolic bp
- Phase 3:
 - Starts at cessation of strain
 - o Small ↓bp immediately

- = reverse of phase 1 mechanisms ie ↓squeeze on intrapulmonary vessels ⇒ ↓VR & ↓ITP on aorta
- o because of briefness of phase HR remains unchanged before starting to fall
- Phase 4:
 - Overshoot of bp:
 - Return of blood to L heart ⇒ restoration of CO
 - But now full CO pumping into vasculature still vasoC ⇒ ↑bp
 - ↓HR:
 - ↑bp sensed by baroreceptors ⇒ ↑afferent firing ⇒ ↑PNS & ↓SNS ⇒ ↓HR (to lower than baseline) & ↓SVR
- it is \perp HR of phase 4 which is exploited to attempt SVT termination


Valsalva Ratio


- = way to characterise/quantify Valsalva Response
- 2 way of calculation:
 - ECG ratio between
 - Longest R-R interval in phase 4
 - Shortest R-R interval in phase 2
 - o Ratio between max HR phase 2 & min HR phase 4
 - HR changes are secondary response to valsalva via baroreflex
- Norm valsalva ratio = >1.5
- Causing of ling ratio (ie baroreflex lresponsive):
 - o Ageing
 - o Diabetes
 - o disease

Abnormal Valsalva's

Square Wave Response

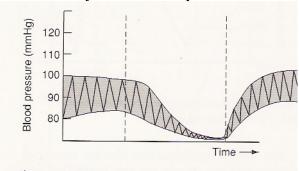
- see in heart failure
- chars:
 - o elevated bp throughout phase 2
 - o no reactive \tag{bp} in phase 4
 - o HR remains constant
- Caused by ↑ed pulmon blood volume acts as reservoir that maintains LV filling during phase 2

Beta Blocked Response

- HR remains constant in phase 2
- Phase 4
 - Much smaller overshoot
 - Quicker recovery
 - → because of lack of HR changes

 \rightarrow if gave atropine (ie \uparrow HR) recovery time would lengthen

 \rightarrow ie \uparrow bp here solely due to \uparrow VR \Rightarrow \uparrow CO (without HR changes as well)


Alpha Blocked Response

- Chars:
 - Lower bp in late phase $2 \text{lack of } \uparrow SVR$ due to no α receptor action
 - Larger early phase 2 bp drop \Rightarrow ↑ed cardiac, periph SNS & central SNS compensatory output which still present when come to phase $4 \Rightarrow$ ↑ed overshoot
 - ↑ed bp overshoot in phase 4
 - size of response depends on HR
 - HR responses intact
- Caused by lack of ↑SVR in phase 2: attempting to attenuate \psi bp from \psi CO

Labetalol Effect

- = mixed beta-alpha blocker
- see:
 - o dramatic ↓size phase 4
 - compared with pure alpha blocker
 - by blocking †HR ie B blocking effects predominate over alpha effects
 - o late phase 2 alpha blocking effects still occur (ie ↓bp) but less so
 - → ∴ propranolol weak a antagonist

Autonomic Dysfunction Response

Figure 4.48 The Valsalva response in autonomic dysfunction: excessive fall in blood pressure in Phase II and absence of overshoot and bradycardia in Phase IV

- Excessive ↓bp in phase 2
- Absence of overshoot in phase 4
- Bradycardia in phase 4

Substances Released from Endothelium Prostacyclin & Thromboxane A2

- prostacyclin:
 - o from ECs
 - o inhibit aggregation platelet
 - o VD
- thromboxane:
 - o from Platelets
 - ↑platelet aggregation
 - o VC
- Balance thromboxane & prostacyclin shifted by aspirin
 - o Aspirin irreversible inhibition of COX by acetylating a serine residue in active site
 - o ECs can remake prostacyclin in hours
 - o Platelets can never thus need new platelets in circ before TxA2 rises again

Nitric Oxide

- Aka Endothelium derived relaxation factor (EDRF)
- NO from arginine by NO synthase (NOS)
- 3 forms of NOS
 - 1 nervous system
 - \circ 2 MP & other immune cells
 - \circ 3 in ECs
- NOS is activated by agents which ⇒
 - o ↑Ca [in] incl Ach & bradykinin
 - o products of platelet activation on uninjured ECs
- NOS keeps patent vessels dilated
- if EC injured: platelet activation ⇒ marked VC
- NO formed in EC then diffuses into vasc smooth mm ⇒ activates guanylyl cyclase ⇒↑cGMP ⇒ VD →GTN acts in same way
- Other roles of NO:
 - o tonic release important mediator of bp
 - o vascular remodelling & angiogenesis
 - o penile erection Viagra slows breakdown of cGMP
 - o impt in brain function
 - o antimicrobial & cytotoxic effects in inflam cells
- NO inactivated by Hb
- VCs of vessels have there effect ↓ed by also causing NO release ⇒ less VC
 →eg bradykinin, VIP etc

Endothelin

- Endothlin 1 =
 - o one of most potent VCs isolated
 - o in ECs, brain & kidneys
- Also
 - o ET-2
 - In kidney & intestine
 - o ET-3
 - As ET-2 and also in blood & high amounts in brain
- endothelin-1 gene \Rightarrow big endothelin-1 \Rightarrow endothelin -1 \mapsto endothelin converting enzyme
- products act mostly locally & paracrine

→but some big endothelin & endothelin-1 released into blood

- receptors coupled to phospholipase C via G proteins:
 - ET_A specific to ET-1 \Rightarrow VC
 - o ET_B
 - responds to all ET 1-3
 - $mav \Rightarrow VD$
 - mediates developmental effects of endothelins

Regulation of Secretion

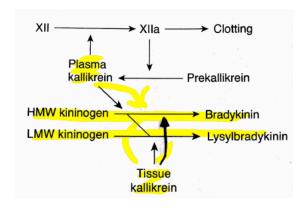
- ET-1 not stored
- Activators of gene:
 - o Angiotensin II
 - Catecholamines
 - Hypoxia
 - o Insulin
 - o HDL
 - o Shear stress

- Inhibitors of gene:
 - o NO
 - o ANP
 - o PGE₂
 - o Prostacyclin

Other Functions of Endothelins

- Brain:
 - o Produced in early brain by neurons & astrocytes
 - o Role in regulation of transport across bbb.
- Face prevent severe craniofacial abnormalities
- Resp prevent resp failure
- GI prevent Hirchsprung megacolon
- Closure of ductus arteriosus

Systemic Regulation by Hormones


- Circulating VD hormones:
 - o Kinins
 - o VIP
 - o ANP
- Circulating VC hormones:
 - Vasopressin
 - o Adrenaline
 - o NA
 - o Angiotensin II

Kinins

- Actions resemble histamine:
 - VC of visceral smooth mm
 - o VD of vasc smooth mm via NO $\Rightarrow \downarrow bp$
 - ↑cap permeability
 - o pain
 - o chemoattractant
- created during:
 - o sweat & salivary secretion
 - o exocrine pancreas
- plasma kallikrein circulates in inactive form
- tissue kallikrein located on apical cells involved in across cell electrolyte cell transport
- bradykinin receptors coupled to G proteins
 - \circ B₁ mediates pain
 - o B₂ found many tissues. Very similar to H₂ receptor

Natriuretic Hormones

- Family:
 - o Atrial (ANP) plasma
 - o Brain (BNP) plasma
 - o C-type (CNP) acts paracrine
- Hypervolaemia ⇒ release
- Action:
 - Antagonise various VC agents $\Rightarrow \downarrow bp$
 - o ANP & BNP control fluid & electrolyte homeostasis via kidney

Circulating VCs

- Vasopressin:
 - o Potent VC
 - o Also causes ↓CO ∴ little change in bp
- NA & Adrenaline:
 - o NA generalised VC action
 - o Adrenaline dilates vessels in skeletal mm & liver
- Angiotensin II:
 - o Generalised VC
 - o Created by:
 - Kidney releases renin \Rightarrow rennin acts on angiotensinogen \Rightarrow angiotensin I
 - ACE acts on angiotensin $I \Rightarrow$ angiotensin II
 - o Renin secretion ↑ed by
 - ↓bp
 - ↓volume of extracellular fluid
 - o action of Angiotensin II:
 - ↑water intake
 - ↑aldosterone release
 - -ve feedback mech on renin