5.Blood Flow & Other Functions

Table of Contents

Mixed Venous Blood	2
Mixed Venous BloodFactors Affecting PvO2 (or PvCO2)	2
Anatomy	
Pressures in Pulmon VesselsPressures Around Pulmon Blood Vessels	3
Pulmon Vasc Resistance	4
Measurement of Pulmon Blood Flow	5
Pulmonary vs Systemic Circulation	5
Passive Distribution of Blood Flow	<i>6</i>
Active Control of Circulation	7
Water Balance in the Lung	8
Non-Respiratory Functions of Lungs Metabolic Functions of Lung	<u>ç</u>
Summary	10

Mixed Venous Blood

- =represents mixture of all systemic venous blood draining from all tissue capillary beds of the body (including myocardium)
- · Comprised of VR from:
 - o SVC
 - o IVC
 - Myocardium from coronary sinus

4 myocardium has highest extraction ratio of O2 (67%) ∴ coronary sinus blood has lowest O2 content & ∴ PO2)

- ∴ only place adequate mixing ∴ sampling = pulmonary artery (PA catheter or Swan Ganz) 4 by convention 2.5cm into pulmonary artery
- Normal values:
 - \circ PvO2 = 40mmHg
 - PvCO2 = 46mmHq
 - CvO2 = 15mlO2/100ml blood
 - CvCO2 = 52mlCO2/100ml
 - o SvO2 75%

Factors Affecting PvO2 (or PvCO2)

- Factors can effect PvO2 or PvCO2 as both in equation
- This will be according to Fick principle:
- Normal equation: Q = flow; V = consumption

 $Q_{min} = V_{min} / (A content - V content)$

Can rearrange:

V = Q (A content - V content)

Then:

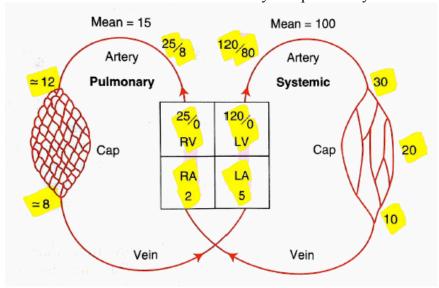
V content = (A content - V) / Q

In this case:

CvO2 = (CaO2 - VO2) / Q

- It is known that PvO2 proportional to CvO2 by virtue of oxy-Hb dissociation curve
- So a ↓PvO2 may be due to:
 - ↓Cao2 ie via ↓Hb (or abnormal Hb), or ↓SpO2
 - ↓CO (ie Q)
 - o ↑VO2 eg fever, hyperthyroid, MH, exercise, shivering

Another Way of Looking at It:


- Oxygen delivery (or flux) = CaO2 x CO
- : PvO2 depends on balance between oxygen delivery and oxygen consumption

Anatomy

- Pulmonary arteries accompany airways branching as far as terminal bronchioles
- Then \Rightarrow capillary bed
- Pulmon veins
 - collect oxygenated blood
 - o run between lobules
 - o unite into 4 large veins into LA

Pressures in Pulmon Vessels

- entire CO from RV flows through the alveoli
- :. perfusion vastly exceeds nutritional demands of alveoli (VO2)
 - ∴ metabolic factors exert no influence on flow
 - ie no autoregulation either pressure or metabolic exists in pulmon circ
- metabolic needs of bronchi are met by independent systemic circulation (bronchial circulation)

$$Q_{\text{pulm}} = \frac{\Delta P}{PVR}$$

Where $Q_{pulm} = RV$ cardiac output = $\sim 51/min$ or $\sim 70ml/kg/min$

- ΔP : contrast pressures inlet to outlet systems:
 - o systemic (MAP RA pressure): $90_{(aorta)} 2_{(RA)} = 88 \text{mmHg}$
 - o pulmonary (MAP LA pressure): $15_{\text{(pulmon art)}} 5_{\text{(LA)}} = 10 \text{mmHg}$
 - → ∴ PVR must be very low compared to systemic circulation!
- : low pressures in pulmon system mean little need for vasc smooth mm tone →due to:
 - lung must accept all CO all the time
 - no concern over global organ regulation of control
 - less gravity to overcome than ULs/head
- sympathetic vasomotor nerves exist but have no defined physiological role
- pulmonary capillary pressures:
 - o uncertain
 - o pressures through pulmon system more linear than systemic system
 - o varies considerably through lung due to hydrostatic pressures

Pressures Around Pulmon Blood Vessels

Capillaries

- pulmon capillaries are entirely surrounded by gas
- little or no support to capillary wall : liable to collapse
- alveolar pressure ~ atmospheric pressures

→esp when breathing, glottis open

effective pressure around capillary = alveolar pressure

 \rightarrow : when \uparrow alveolar pressure \rightarrow pressure inside cap \Rightarrow collapse

→this difference = transmural pressure

Arteries & Veins

- pressure around large vessels can be much lower than alveolar pressure
 - \circ lung expands \Rightarrow pulls vessels open by radial traction of lung parenchyma that surrounds them
 - o ∴ effective pressure low
- : classified into
 - o alveolar vessels:
 - calibre determined by pressure within them & alveolar pressure
 - o extra alveolar vessels
 - all art & vein in lung parenchyma
 - calibre greatly affected by lung volume

Pulmon Vasc Resistance

• vascular resistance = input pressure - output pressure

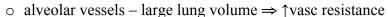
blood flow

- Mean pulmon artery pressure (MPAP) = 15mmHg
- Pulmon arteries & arterioles are shorter & thin walled compared to systemic system
- systemic vs pulmon pressures = x8
- as blood flow same : resistance must be x8 in systemic system
- pulmon vasc resistance =
 - 0 (15-5)/6
 - $\circ = 1.7$ mmHg/L/min
- systemic =
 - \circ (100-2)/6 = 16.3mmHg/L/min
- PVR made up from:
 - Arterial vessels ~30%
 - o Microvascular (arterioles to venules) ~ 50%
 - \circ Veins $\sim 20\%$
- More even spread of PVR \Rightarrow pulsatile flow through pulmon circ
- Capillary pressure = 8-10mmHg
 - → ~ halfway between MPAP & LAP
- \uparrow LAP to 20-25mmHg \Rightarrow big enough \uparrow capillary pressure \Rightarrow pulmon oedema
- benefit of low PVR is that with any ↑CO see ↓ed relative ↑pulmon vasc pressure
- PVR is lowest at FRC

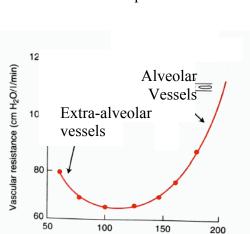
Increasing arterial

300

200


100

Pulmonary vascular resistance (cm H₂O/II/min)


- pulmon vasc resistance can become even smaller as pressure within it rises: →2 processes:
 - recruitment:
 - \uparrow pressure $\Rightarrow \uparrow$ flow or opening of shut down vessels $\Rightarrow \downarrow$ resistance
 - chief mechanism in \pressure in pulmon artery at low starting pressures
 - distension:
 - in higher starting pressures
 - = change in shape from nearly flat to more circular →strong evidence cap wall resists stretching

→can both occur together also

- lung volume also effects pulmon resistance:
 - o extra-alveolar vessels large lung volume ⇒ tresistance
 - high volume lung pulls vessels open
 - @low volume smooth mm \Rightarrow \tag{resistance}
 - lung collapsed critical opening pressure not reached

- depends on transmural pressure ie alveolar : vasc pressure
 - during large insp: ↓vasc pressure ⇒ ↑transmural pressure ⇒ squash vessel
- also see stretching & thinning of alveolar walls ⇒ direct affect on calibre of capillaries
- Drugs that affect smooth mm will effect pulmon resistance:
 - o VCs ⇒ ↑resistance = serotonin, histamine, NA Lesp good when lung volume is low
 - VDs eg Ach

Lung volume (ml)

Increasing venous

20

Arterial or venous pressure (cm H₂O)

Measurement of Pulmon Blood Flow

• Use Fick principle:

Blood flow/min =O2 consumption/min

Conc of O2 in pulmon artery – Conc O2 in pulmon vein

- O2 consumption measured with spirometer.
- Direct vein & arterial sampling with catheters

Pulmonary vs Systemic Circulation

Blood Volume

- Erect: 15% circulating volume = central:
 - o Pulmonary Circ (Lungs) ~500ml:
 - 3% is in the pulmonary capillaries
 - Heart ~250ml
- Supine: \uparrow to ~25% of circulating volume = central

Anatomical

- Pulmon circulation:
 - o Dual circulation pulmon arteries & bronchial arteries
 - ~30cm short
 - o thin walled vessels large pulmon arteries only 30% of aorta wall thickness
 - o pulmon post capillary venules contain smooth mm (systemic do not)

Functional Differences

- pulmon =
 - o gas exchange
 - o metabolic functions is exposed to whole of CO
- systemic = delivery of O2 & nutrients to tissues

Vascular Resistance

- PVR =
 - o 1/10th systemic
 - o Minimal at FRC
 - Evenly distributed along whole circulation : flow pulsatile throughout

→systemic max at arterioles :. non pulsatile distal to arterioles

- o Opposite stimuli for VC/VD compared to systemic:
 - ↑VC: hypoxia, hypercarbia, acidaemia

Pressures (P pressure: S pressure)

- systolic= 25:120
- diastolic 8:80
- mean = 15:90
- Perfusion pressure:
 - \circ Pulm: 25-5 = 10mmHg
 - \circ Systemic: 90-2 = 88mmHg

Vascular Tone

- Systemic circulation:
 - o †ed resting vasomotor tone
 - o †ed response to endogenous & exogenous stimuli
 - → : with ↑ed tone blood volume shifts from periph to central

Gravity

- $erect \Rightarrow supine$: shift volume centrally
- vertical pressure gradient in pulmon vessels in combo with effect of alveolar pressure = Starling resistor

Filtration

- pulmon circ good at filtering:
 - o clots
 - o air
 - o debris
 - → preventing systemic emobolisation

hypxic pulmonary vasoconstriction

see later

metabolic functions

see later

Passive Distribution of Blood Flow

- Upright/supine lung blood flow \s in linear fashion from dependent to nondependent (bottom to top)
- During exercise ↓ in regional differences
- Explained by hydrostatic pressures:
 - Pulmon system = Low pressure
 - o Vertical Column of blood exerts 23mmHg difference from top to bottom 2nd to gravity
 - o Alveolar vessels are exposed to gravity AND alveolar pressure
 - \rightarrow = a 'starling resistor'
 - → defines 'pressure heads' which prevent flow
 - Lung split into zones
 - Zone 1 top region $(P_A > P_a > P_v)$
 - Pulmon art pressure falls close/below atmospheric ⇒ little/no flow

- Only occurs under pathological conditions eg
 - ↓art pressure eg haemorrhage OR
 - o †alveolar pressure eg positive pressure vent
- ventilated but unperfused lung : physiologic (alveolar) dead space
- Zone 2 middle section $(P_a > P_A > P_v)$ (driving pressure = P_a - P_A)
 - Pulmon art pressure > alveolar pressure
 - Venous pressure still < alveolar pressure
 - : blood flow is determined by arterial:alveolar pressures

→NOT a-v difference as in systemic situation

→venous pressure only influence if > alveolar pressure

- just below zone 1
- capillary recruitment occurs as move down zone
- zone 3: bottom section $(P_a > P_v > P_A)$ (driving pressure = Pa Pv)
 - venous pressure > alveolar pressure ∴ flow determined in usual way
 - blood flow determined by distension of capillaries

⇒pressure within ↑s as go downwards

→alveolar pressure constant : ↑ing transmural pressure

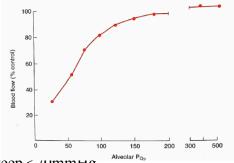
• distension & recruitment $\Rightarrow \downarrow$ s resistance to flow (Q = $\Delta P/R$)

→zone where should measure PAWPs form

- (zone 4)
 - @ low lung volume resistance of extraalveolar vessels becomes impt
 - Jin regional blood flow seen starting at base lung where parenchyma least expanded

NB zones 1-3 = alveolar vessles (pulmon capillaries) responsible for distribution of blood flow Zone 4 = extra-alveolar vessels responsible

Other Causes of Uneven Blood Flow


- some regions intrinsically higher vasc resistance
- peripheral regions of lung receive less blood than central
- random arrangement of vessels & capillaries ⇒ inequalities of flow

Active Control of Circulation

- hypoxic pulmonary vasoconstriction
- contraction of smooth mm in arterioles in hypoxic region
- response to P_AO2

→not PaO2 of pulmon artery

- also see response to PACO2 \Rightarrow vasodilation
- stimulus response curve non linear ie plateau above 100mmHg P_Ao2; steep < /ummHg
- precise mechanism unknown but does not require neural control
- theory's:
 - o perivascular tissue releases VC substance in response to hypoxia
 - o inhibition of voltage K channels $\Rightarrow \uparrow Ca [in] \Rightarrow$ smooth mm contraction
- NO does play a role:
 - o eNOS (endothelial) \Rightarrow NO \Rightarrow GTP to cGMP \Rightarrow smooth mm relaxation \rightarrow inhibitors of NOS \Rightarrow pulmonary VC
- endothelin 1 (ET-1) & thromboxane A2:
 - o released by endothelium
 - o potent VCs
 - o blockers of ET-1 receptor can Rx pulmon HTN
- hypoxic VC ⇒ directs blood away from hypoxic lung segments⇒decreases V/Q mismatch

 \rightarrow impt in thoracic surgery to divert blood away from collapsed lung \Rightarrow better V/Q match than would expect

- chronic hypoxia (eg COPD) $\Rightarrow \uparrow PVR \Rightarrow cor pulmonale$
- @high altitidue see generalised pulmon $VC \Rightarrow \uparrow pulmon$ art pressure
- @birth:
 - o fetal life -
 - pulmon VC very high partly due to hypoxic VC
 - only 15% CO through lungs
 - o 1^{st} breath oxygenates alveoli \Rightarrow dramatic \downarrow vasc resistance 2^{nd} to VD of smooth mm
- other active processes on pulon resistance:
 - o low pH \Rightarrow VC esp if hypoxia also present
 - \circ autonomic ns − ↑symp output \Rightarrow VC

Water Balance in the Lung

- must keep alveoli free of fluid
- fluid exchange across endothelium obey's Starlings Law

net fluid out =
$$(Pc - Pi) - o(\pi c - \pi i) \times k$$

Pc = capillary hydrostatic pressure

Pi = interstitial pressure

O = reflection coefficient ie effectiveness of capillary in preventing proteins across it

 πc (~28mmHg)= osmotic force of blood

 $\pi i = \text{osmotic force of interstitium}$

- Values unknown but likely net Starling flow is outward ~10-20ml/hr into lymph
- Fluid which leaks out into interstitium of alveolar wall tracks to
 - o perivascular & peribronchial space = low pressure areas sucking fluid into them
 - $\circ \Rightarrow$ hilar lymph nodes
- Pulmon oedema = engorgement of these spaces

⊔aka interstitial oedema

- If pulmon oedema persists ⇒ alveolar oedema
 - o fluid cross alveolar epithelium into alveolar space
 - o no gas exchange possible
 - o alveoli fill one by one
 - o ?exact cause of fluid into space. Perhaps =
 - interstitial route drainage exceeded ⇒ ↑ed pressure to threshold
 - → : alveolar oedema more serious than interstitial oedema
- :. Mechanism to prevent pulmonary oedema:
 - o lymph:
 - interstitial fluid movement towards hilum
 - interstitial pressure more –ve towards hilum : gradient for flow
 - lymphatic flow promoted by rhythmic external compression occurring in respiration

→ (& presence of valves in central lymph)

- ↓ interstitial oncotic pressure
 - 2 mechanisms:
 - when filtration ↑s the NET albumin loss across membrane in filtrate ↓s
 - †lymph flow to wash albumin out of interstitium
 - = oncotic buffering mechanism
 - it will fail if capillary is damaged
- o high interstitial compliance:
 - large volume of fluid can accumulate in interstitium without much ↑pressure

- until threshold where interstitium full \Rightarrow sharp $\uparrow P \Rightarrow$ alveolar flooding
- o surfactant:
 - opposes movement of water from pulmon interstitium into alveolar spaces
 - 2 forces which encourage transudation of fluid into alveoli:
 - surface tension causes pressure within alveolar lining fluid < alveolar pressure
 - pulmon cap pressure (in most of lung) > alveolar pressure
 - surfactant \(\)s surface tension!
- o Active removal:
 - fluid in alveolar space actively pumped out by NaK ATPase in epithelial cells
- mechanisms quite effective at preventing at counteracting \inp ing pulmon cap hydrostatic pressures \rightarrow P_c can \uparrow x3 before alveolar flooding
- Rate of lymph flow from lung \(\gamma \) if capillary pressure is high over long period

Non-Respiratory Functions of Lungs

- · Blood reservoir
 - ~ 450mls
 - o Can ↑ with larger pulmonary artery pressure
 - o This volume can be mobilised to \tauLVEDV (LV preload) with:
 - IPPV
 - PEEP
 - Straining
 - Valsalva eg (↓to 250ml)
- Any ↑in lung blood volume ⇒ ↓lung compliance

[central blood volume (800ml) = volume of:

- o Blood in heart (350ml)
- o Blood in lungs (450ml)]
- Filter blood
 - o small thrombi removed before reach vital organs eg brain
 - o wbc's trapped ?why
 - Also particles/fat emoblism

Metabolic Functions of Lung

- lung only organ apart from heart which receives all blood
- vascular ECs responsible for metabolic properties
- endothelium actively produces NO
- number of vasoactive substances metabolised in lung:

Substances Effected

- Angiotension I converted to angiotensin II by ACE
- located in small pits in surface of capillary ECs
- Bradykinin 80% inactivated by ACE
- Serotonin 98% removed by uptake & storage
- NA \sim 30% removed by uptake
- Leukotrines almost completely removed
- Carbohydrate metabolism
- Proteases removed

Substances not Effected

- Adrenaline –
- Angiotensin II
- Vasopressin (ADH)
- Histamine & dopamine not effected

AA metabolites

- membrane bound phospholipid AA by phospholipase A2
- lot of AA metabolism and release under certain circumstances:
 - o lipoxygenase:
 - 4 leukotrienes ⇒ airway constriction
 - o COX pathway:
 - 4 Prostagladins potent VDs or VCs
 - PGE2 helps relax ductus arteriosus in fetus

Other Roles

- Clotting mechanism:
 - o Large no of mast cells containing heparin in intersitium
- Defense mechanism lung secretes IgA in bronchila mucus, pulmonary macrophagues
- Synthetic functions:
 - Production of surfactant
 - o Protein synthesis collagen & elastin
- Heat regulation esp upper resp tract
- Facilitate speech
- Pharmacologic:
 - Pharmacokinetic mainly ie
 - route of administration eg volatiles
 - Effect site eg bronchodilators
 - Route of elimination eg volatiles & 1st pass uptake of fentanyl

Summary

- Capillaries are exposed to alveolar pressure; extra alveolar vessels have lower pressure
- Pulmon vasc resistance is low. It ↓s with ↑CO.
- Pulmon vasc resistance \(\gamma \) at low & high lung volumes
- Hypoxic pulmonary VC \s blood flow to poorly ventilated regions
 - \rightarrow release of this at birth $\Rightarrow \uparrow$ blood flow to lung in baby
- Many metabolic functions of lung most impt angiotensin $I \Rightarrow II$ by ACE