5.CVS Response to Function

Table of Contents

CVS Response to Changes in Posture	
Supine ⇒ Erect	
Shock	3
Hypovolaemic Shock	3
Coordinated Response to Exercise	5
Cardiac Output	5
Timing of Changes	
Timing of Changes	
CVS Changes	5
Timing of Changes CVS Changes Muscle Blood Flow	6
Blood Flow to Other Organs	6
Summary CardioResp Control During Exercise	
Cardiac & Vascular Function Curves	
CO = VR	

CVS Response to Changes in Posture

Supine ⇒ Erect

CVS Challenges

• \downarrow in MAP: = due to \downarrow CO due to \downarrow VR

→ venous pooling of blood in the lower extremities effect occurs within seconds, but not immediately.

- Hydrostatic effects on CPP:
 - o brain is ~ 30 cm higher than level of the heart in the erect position (as opposed to the supine)
 - \downarrow MAP at level of brain of ~ 22 mmHg
 - \circ effect = *immediate*.
 - \rightarrow NB: \downarrow MAP at brain level is offset by a similar:
 - ↑ CVP venous side (brain circulation is like an inverted U-tube) as well as on the
 - ↓CSF pressure.
 - CPP is further augmented by an increase in VR from the brain to the heart in the erect position
- Summary: the main challenge to the CVS (and the brain circulation) is \$\psi MAP\$ caused mainly by \$\psi VR\$ **⇒** ↓ CO.

The CVS response

- baroreceptor reflex mechanism:
 - \downarrow MAP \Rightarrow sensed by carotid (mainly) and a ortic baroreceptors $\Rightarrow \downarrow$ traffic up to NTS \Rightarrow via medullary control centre $\Rightarrow \uparrow$ SNS outflow and \downarrow PNS outflow.
 - o The \uparrow SNS outflow causes: [remember: MAP (minus RAP) = CO x SVR]
 - [\uparrow preload] peripheral venoC $\Rightarrow \uparrow$ VR $\Rightarrow \uparrow$ CO $\Rightarrow \uparrow$ MAP
 - [\uparrow afterload] peripheral vasoC $\Rightarrow \uparrow$ SVR $\Rightarrow \uparrow$ MAP (slight \downarrow in SV due to afterload increase, but net $effect = \bigwedge MAP$)
 - \uparrow cardiac contractility $\Rightarrow \uparrow$ CO $\Rightarrow \uparrow$ MAP
 - \uparrow Heart rate $\Rightarrow \uparrow$ CO $\Rightarrow \uparrow$ MAP

0

NB: Baroreflex ⇒ vasoconstriction = more effective than venoconstriction to restore MAP

→ (not to be confused with the vascular function curves where venoconstriction shifts the curve more up than what vasoconstriction rotates it downwards)

- Cerebral pressure autoregulation: a.k.a. the myogenic mechanism:
 - o effective at maintaining a constant cerebral blood flow within a MAP range of 50 150 mmHg.
 - o It effects this by changing the CVR.
 - o Onset is not immediate though.

$$\begin{array}{ccc} & \underline{MAP-(\ CVP\ or\ ICP)} & \leftarrow \leftarrow \ arterial\ baroreflex \\ CBF & = & CVR & \leftarrow \ pressure\ autoregulation \end{array}$$

Activity: Mm pump further augments VR

in conjunction with the one-way valves in the veins to prevents further venous pooling

Overview of CVS Response

- Baroreceptor & cerebral autopressure reg effective in normal people to prevent fainting when standing from supine.
- If the arterial baroreflex is blunted, \Rightarrow syncope

→ eg elderly and diabetic autonomic neuropathy

The standardized valsalva test can be used to check the integrity of the baroreflex

Shock

- Shock = inability of circulation to ensure adequate O2 delivery to the body tissues
- Types:
 - hypovolaemic: - haemorrhagic (loss of *all* blood components)
 - loss of plasma (burns)
 - loss of fluids + electrolytes (D+V's, ↑ sweating etc)
 - Internal (3rd spacing; eg ascitis, ileus, pancreatitis)
 - distributive: - septic
 - anaphylactic
 - neurogenic (including sympathectomy of a SAB)
 - vasodilator drugs,
 - acute adrenal insufficiency
 - pump failure (AMI) cardiogenic:
 - dysrhythmia (tachy or brady)
 - acute valvular dysfunction / rupture of ventricular wall or IV septum
 - Obstructive: - tension pneumothorax
 - massive pulmonary embolus
 - pericardial disease (tamponade, constriction)
- $DO2 = CO \times CaO2$
- : whenever discuss shock must consider all factors influencing CO:
 - o preload
 - o afterload
 - o conreactility
 - o HR

Hypovolaemic Shock

- Very common
- · Causes both:
 - \circ ↓CO via volume loss \Rightarrow ↓preload \Rightarrow ↓CO \Rightarrow ↓MAP
 - o ↓CaO2

Resp Response:

- Severe \downarrow MAP \Rightarrow hypoxia/hypercarbia/acidosis \Rightarrow periph chemoreceptor stimulation \Rightarrow
 - o ↑SNS &
 - hyperventilation
 - in attempt to defend CaO2

CVS response

- can be classified by time:
 - o Immediate:
 - Sensors:
 - Arterial baroreflex [biggest response]
 - o aim to restore CO & MAP to normal
 - ↓MAP sensed in carotid & aortic baroreceptors
 - \psi volume sensed by low pressure sensors of atria & large veins
 - hypoxia/hypercarbia/acidosis sensed by periph chemoreceptors
 - Effect- predominantly of ↑SNS & ↓PNS via baroreceptors:
 - venoC: \uparrow VR $\Rightarrow \uparrow$ CO $\Rightarrow \uparrow$ MAP
 - vasoC: \uparrow SVR $\Rightarrow \uparrow$ MAP
 - → widespread sparing only brain & heart
 - ↑HR: ↑CO & ↑MAP
 - \rightarrow in severe shock also see initial tachycardia \Rightarrow transient brady \Rightarrow back to tachy →?unmasking of vagal tone to help clotting

- \uparrow contractility: \uparrow CO $\Rightarrow \uparrow$ MAP
- o Intermediate:
 - Autotransfusion: Interstitial fluid move to intravascular (reversal of Starling forces) \rightarrow Up to 1000 ml fluid /hr can be moved intravascular via this mechanism.
 - Mobilization of reserve volumes: splanchnic/liver mainly
 - Decreased renal blood flow via ↓MAP
 - (normally $\sim 25\%$ CO)
 - initial +ve effects:
 - o efferent vessels constricted > afferent
 - $\circ \downarrow \text{renal plasma flow} \Rightarrow \downarrow \text{GFR} \Rightarrow \text{filtration fraction} \uparrow \text{ed}$
 - o ↑ed Na retention
 - → ↓UO which serves to preserve circulating volume
 - late –ve effects:
 - o azotemia ie nitrogen waste products retained ⇒ ↑Urea & creat
 - Further redistribution of CO: ↓ muscle flow, ↓ skin flow
 - \uparrow Muscle pump activity of legs (restlessness) $\Rightarrow \uparrow VR$
 - ↑ ADH release (from volume receptor input) ⇒ water retention
 - ↑ **Thirst** + other behavioural responses
 - ↑ renin/angiotensin/aldosterone mechanism
 - † adrenaline from adrenal medulla
- o Delayed (post haemorrhage) aim to restore components lost in blood
 - 12 72 hrs:
 - plasma volume restored to normal
 - Albumin replaced rapidly from extravascular stores
 - Days:
 - plasma proteins and enzymes: \(\) liver synthesis
 - Days to weeks:
 - RBC's: ↑EPO from kidneys ⇒
 - o reticulocytes peak day 10 days (norm ~1% retics in blood)
 - o mature RBC's back to normal 4 8 weeks.
 - Other: PLT's, WBC's
- Can also be classified by severity:
 - o mod shock $\Rightarrow \downarrow$ pulse pressure
 - due to diastole caused by catecholamines †ing vascular tone
 - $\Rightarrow \downarrow$ discharge baroreceptors $\Rightarrow \uparrow$ symp tone $\Rightarrow \uparrow$ VC & \uparrow HR
 - severe shock ⇒
 - ↓mean pressure
 - tachy⇒brady⇒tachy
 - widespread VC spares only brain & heart vessels
 - kidneys initial positive changes but then –ve acute failure
- Any inadequate perfusion to tissues \Rightarrow
 - o ↑anaerobic glycolysis ⇒ lactic acid accumulation
 - o low/mod levels of lactic acid excellent fuel for heart/CVS system
 - \rightarrow but tipping point \Rightarrow acidosis
- lactic acidosis ⇒
 - ↓myocardial contractility
 - o ↓vascular response to catecholamines ie ↑ed VD
 - \circ toxic to CNS \Rightarrow coma

Coordinated Response to Exercise

- muscular exercise requires 3 tasks from circulation:
 - o ↑pulmon flow to enhance gas exchange
 - ↑ed RV output
 - o ↑ed flow thru working mm
 - ↑ed LV output
 - local vasoD
 - o maintain stable bp
 - controlled vasoC in non active tissues
- other issues need addressing:
 - o energy production & utilisation
 - o temp reg
 - fluid shifts
 - o acid base changes/compensation
- exercise can be
 - o static isometric
 - o dynamic isotonic

Cardiac Output

- CO ↑ by x5 ie 5 l/min to 25 l/min
- Heart = demand led pump:
 - o ↑ed demand set by exercising mm effecting ↑VR
- ↑VR caused by:
 - \circ venoC (\uparrow VR)
 - o vasoD (↓SVR)
 - o mm pump of limb muscles (need intact venous valves)
 - o thoracic pump:
 - ↓ITP & ↑abdo pressure with ↑ed inspiration
 - → ↑RR & ↑depth of insp in exercise enhances effects
 - -ve effects of expiration prevented by venous valves
 - ↑myocardial contractility
 - o ↑HR
 - o diversion of blood from non active tissue (splachnic & renal circulations)
 - o local metabolites in exercising mm \Rightarrow arteriolar dilation $\Rightarrow \downarrow SVR \Rightarrow \uparrow CO \Rightarrow \uparrow blood flow to$ exercising mm $\Rightarrow \uparrow VR$

Timing of Changes

- start of exercise:
 - o sudden ↑CO then gradual ↑ to steady state
- sudden initial changes 2nd to:
 - o cortical activity (motor area)
 - o sensory nerve activity assoc with movement
 - o mm/thoracic pump ⇒ \uparrow VR
- slow changes to steady state 2nd to:
 - o vasoD in mm
 - redistribution of CO
 - o ↑SNS
- @end of exercise:
 - o abrupt ↓CO
 - o exponential fall

CVS Changes

- HR changes:
 - o ↑linearly up to max ~200/min in young adult

- o initially caused by ↓vagal output
- o later by ↑ed SNS output
- stroke volume:
 - o ↑in non-linear way
 - o big ↑in light/mod exercise; only small ↑ into severe exercise
 - o reasons for ↑:
 - ↑VR & ∴ ↑LVEDV
 - \uparrow contractility $\Rightarrow \downarrow$ LVESV
- blood pressure:
 - \circ SBP can rise to 190-225mmHg 2nd to \uparrow ed CO
 - o DBP may increase slightly or even fall 2nd to ↓SVR
 - \rightarrow NET result \(\frac{1}{2}\) pulse pressure x2-3
- Baroreceptor reflex reset to higher level in severe exercise

Muscle Blood Flow

- @rest:
 - \circ mm blood flow = 2-3ml/100g/min
 - → mediated by SNS constriction of arterioles
 - ~20% of CO despite skeletal mm being ~40% of lean body mass
 - o precapillary sphincters closed \Rightarrow diverts mm blood flow away from microcirculation to main channels
- @exercise see:
 - o relaxing of precapillary sphincters due to:
 - ↓PO2
 - ↑PCO2
 - ↑H
 - †temp
 - ↑K
 - ↑ADP in interstitial fluid
 - \rightarrow result is \uparrow total blood flow to max 50ml/100g/min ie \uparrow x20 \sim 80-90% of CO
 - o ↑diffusion of O2 into mm cell & ↑total O2 uptake by up to x40:
 - ↑delivery O2
 - R shift of OHDC
- Static contraction: sig ↓mm flow ⇒ ↑pressure in mm
- Isotonic contraction good mm flow as flow occurs in relaxation

Blood Flow to Other Organs

- †coronary flow:
 - o must meet extra cardiac work
 - o mediated by:
 - local metabolic autoreg
 - circulating catecholamines stim B2
- \[\text{flow to GIT & kidney} SNS activity shifts flow to exercising mm \]
- †skin flow to help with heat loss (SNS mediated)
- · cerebral flow:
 - o remains constant at all levels of ex ~50ml/100g/min
 - o but relatively much smaller % of ↑ed CO

Summary CardioResp Control During Exercise

• 1st ventilation \(\) s keeping close proportion of:

$$\uparrow$$
VO2 + VCO2 \Rightarrow PaO2 + PaCO2 = normal

near max intensity: V_A rises $> VO2 \rightarrow \downarrow PaCO2$

- 1st 5-10seconds of exercise: ↑HR 10-15/min due to ↓vagal tone, then steady ↑ing HR over 5-10min due initial tachy under central command to \forall SNS output
- end of exercise: HR & V_A fall sharply initially then more gradual \(\)
- during exercise:
 - o baroreceptors reset to operate at higher bp ranges allowing \tagentlefted HR, \tagentlefted CO, \tagentleft MAP in moderate exercise this resetting compensates for \(\subset SVR \) in more strenuous exercise need \forall SNS to compensate
 - o resp chemoreceptor reflexes also seem to reset:
 - †ed response to change in PaO2
 - severe exercise: ↑lactate (\pH) additional stimulus

Cardiac & Vascular Function Curves

- Exercise requires an ↑CO & control of heart & vasculature
- If isolated symp ns stim to heart (cardiac symp nerve stim):
 - \circ \uparrow MAP $\Rightarrow \downarrow$ CVP both of which favour \downarrow ed SV (ie opposite of desired effect)
- in exercise:
 - o [\afterload] \angle d MAP minimised by VasoD of exercising mms
 - o [preload] JCVP minimised by:
 - periph venoC
 - mm & thoracic pumps encouraging VR
- in upright exercise SV can double due to:
 - o [preload] ↑EDV (from ↑CVP)
 - o [contractility] ↓End systolic volume from ↑EF via ↑ed contractility

CO = VR

Ohms Law:

$$VR = \frac{MSP - RAP}{VVR}$$

$$MSP = mean systemic pressure \sim 7mmHg$$

$$RAP \sim 2-3 mmHg$$

$$VVR = venous vascular resistance$$

$$\hookrightarrow \Delta P \sim 5mmHg ie venous resistance is v low$$

c/f

LHCO =
$$\frac{MAP - RAP}{SVR}$$
 LHCO = L heart CO
 $\Delta P \sim 88 \text{mHg}$

c/f

$$RHCO = \frac{MPAP - LAP}{PVR}$$

$$RHCO = R \text{ heart CO}$$

$$Mean Pulmonary artery P \sim 15mmHg$$

$$LAP 5mmHg$$

$$\Delta P \sim 10mHg$$