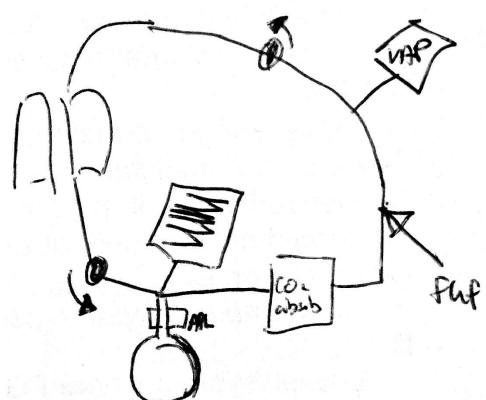


Breathing Circuits

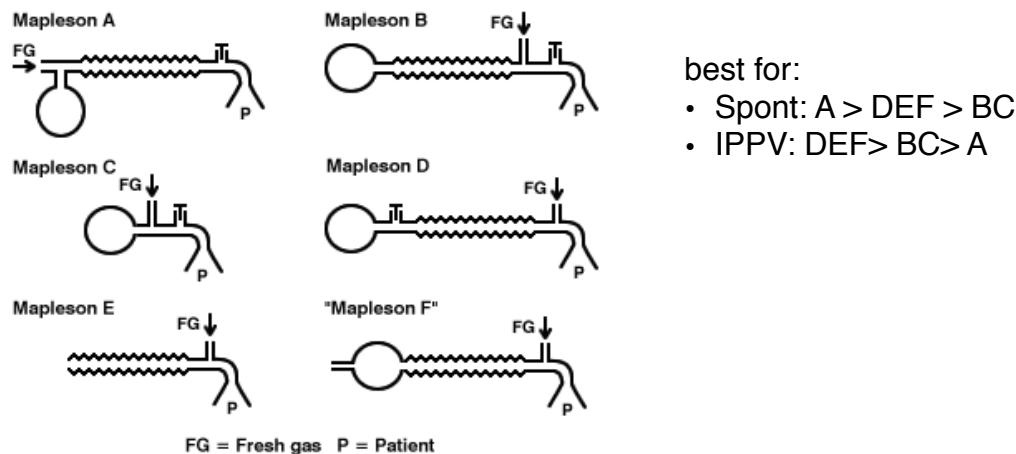

Breathing Circuits	2
Classification Overview	2
Mapleson Classification.....	3
Semiclosed/Closed Systems	4
CO2 Absorbers.....	5
Fresh Gas Flow Requirements.....	6
Anaesthetic Machine Checks	7

Breathing Circuits

- gas exits the anaesthesia machine (via common gas outlet) \Rightarrow breathing circuit
- function of circuit:
 - delivery O₂ & volatiles to pt
 - eliminate CO₂ \Rightarrow via gas inflow or soda lime absorption

Classification Overview

- simple:
 - open - old fashioned dropping ether onto gauze
 - semi-open -
 - Mapleson systems
 - typically used for induction of patient
 - usually a single limb system that uses an APL valve to
 - control pressure of gas
 - allow waste gas to leave
 - need high FGFs to prevent rebreathing
 - semi-closed - as next
 - closed - use a Co₂ absorbent so gases are re-circulated
 - \hookrightarrow semi-closed to closed depends on amount of FGF
- clinical:
 - non rebreathing:
 - eg Mapleson classification
 - adv:
 - provide good control of inspired gas conc
 - less dead space & less resistance \therefore good for babies
 - no sodalime required
 - disadv:
 - less economical as expired breath is wasted to atmosphere
 - atmospheric pollution
 - rebreathing systems
 - without modifications \Rightarrow expired alveolar gas with 5% CO₂ is inspired as part of next V_t
 - amount of CO₂ rebreathed depends on 4 factors:
 - design of breathing circuit - ie soda lime in circuit
 - mode of vent - spont or controlled
 - fresh gas flow rate - high enough \Rightarrow washout of CO₂
 - pts resp pattern
- example of modern semi closed:



• features:

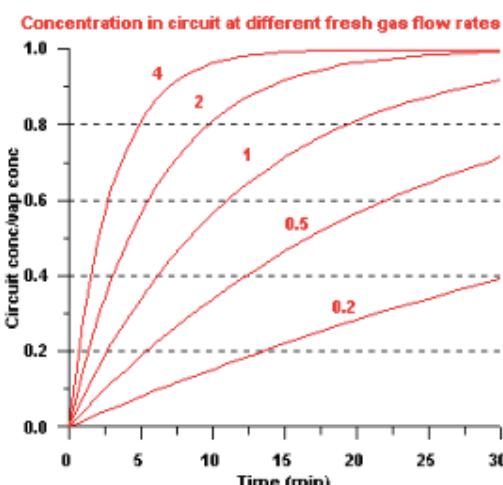
- APL valve before sodalime - \downarrow CO₂ to absorb
- FGF after sodalime - \downarrow airflow through absorber
- vap after FGF \therefore predictable vap conc on outflow limb
- unidirectional valves on insp & exp limb

Mapleson Classification

- systems A-E (F added later)
- does not include systems with CO₂ absorption ∴ are non-rebreathing circuits
 - prevention of re-inspiration of CO₂ depends on fresh gas flow rate

Mapleson	Systems	Uses	FGF SV	FGF IPPV
A	Magill Lack	Spontaneous Gen Anaesthesia	70-100 ml/kg/ min	Min 3 x MV
B		Very uncommon, not in use today		
C		Resuscitation Bagging		Min 15 lpm
D	Bain	Spontaneous IPPV, Gen. Anaes	150-200 ml/kg/ min	70-100 ml/kg/ min
E	Ayres T Piece	Very uncommon, not in use today		
F	Jackson Rees	Paediatric <25 Kg	2.5 – 3 x MV Min 4 lpm	

- A =
 - good for spont breathing & FGF can be lower
 - but APL valve close to pt ∴ difficult to use
 - is a modification Lack system:
 - APL valve moved to machine end using a coaxial cable
 - adds volume to system and makes pt end heavy
- B & C =
 - rebreathing of exhaled gases occur even when v high fresh gas flow rates are used
 - note FGF is distal to outlet valve
 - inspiration is taken from same space into which prev breath was expired
 - should not be used for anaesthesia
 - mapleson C:
 - = ambibag system used for emerg resus
- D -
 - coaxial system where FGF delivered directly to pt
 - needs v high FGF to prevent rebreathing of CO₂


- convenient to use & common for induction
- F:
 - most commonly used
 - used for paeds surg

Semiclosed/Closed Systems

- used for maintenance of GA
- can also be used for induction but slower process
- needs a
 - CO₂ absorber - exothermic reaction \Rightarrow adds warmth & humidity to circuit
 - resp gases monitoring system to measure CO₂ & volatile agent
- speed of FGF dictates closed vs semi closed
 - if FGF equally exact metabolic uptake of gases \Rightarrow closed
- closed system:
 - adv: minimised volatile agent use, O₂ use, atmospheric pollution
 - disadv: system inherently unstable \Rightarrow mismatching of flow to pt \Rightarrow over fill or under fill
- semi closed:
 - adv: higher flows allow use of precision out of circuit vaporiser
 - disadv: use more O₂, volatile, more pollution
- features of semiclosed system:
 - undirectional valves on insp & exp limb- ensure correct flow of gases around circuit system
 - ↳ if fail \Rightarrow rebreathing
 - pressure relief valve
 - need smaller tubing in paeds - too much dead space to generate pressure to open valves

Vaporisers in Circuit

- vaporiser in circuit (VIC):
 - placed in insp limb of circuit
 - theory:
 - if plane of anaesthesia becomes light \Rightarrow \uparrow MV \Rightarrow \uparrow agent vaporised \Rightarrow deepen anaesthesia
 - but not that reliable
 - must be low resistance vaps
 - need to empty of condensed water vapour regularly
 - are cheap & simple
 - difficult to adjust required dose of volatile esp in circle system
- vaporiser out of circuit (VOC):
 - accurate - introduce precise conc of volatile into circuit
 - rate of change of anaesthetic conc in circuit depends on FGF ie \uparrow ed FGF \Rightarrow equilibration faster

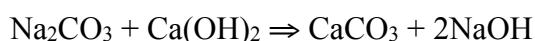
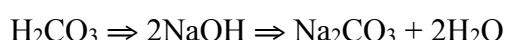
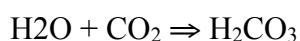
Types of Semi Closed Circuit

- standard parallel Y system
- extendible parallel Y system
- complete semi closed circuit system
- co-axial semi closed circuit system

CO₂ Absorbers

- machines use double canisters in series:
 - top canister:
 - is exposed expired gas first
 - most of CO₂ removed
 - bottom canister - removes any remaining CO₂
- when top canister exhausted \Rightarrow discarded & bottom canister moved to top
 - \hookrightarrow = most efficient way of using

Contents




- soda lime activator =
 - NaOH
 - KOH
- silica added as hardener
- indicators - sodasorb (ethyl violet) - colourless when fresh, purple when exhausted due to pH change

Problems

- soda lime incompatible with trichloroethylene - but never used
- sevoflurane unstable in soda lime \Rightarrow compound A (but now thought not a problem)
- may see exhaustion of soda lime without colour change
- carbon monoxide: produced by all volatiles to varying degrees:
 - des > enflurane > iso >> sevo
 - worse in dry absorbent such as baralyme
 - minimise by:
 - turn O₂ off at end of case
 - change absorbent regularly
 - use low flows
 - \hookrightarrow or use different absorbant eg lithium hydroxide lime or house brand absorbents specific to volatile
 - \hookrightarrow with less NaOH or KOH

Reactions

- 2 systems:
 - sodium hydroxide = sodalime
 - potassium hydroxide = baralyme (now withdrawn)
- 3 steps in chemical reaction

- CaCO₃ = insoluble precipitate

Clinical Signs of Exhaustion of SodaLime

- modern system should alarm if CO₂ rebreathe >2-3cmH₂O
- other signs:
 - rise (later a fall) in HR & bp
 - tachypnoea
 - resp acidosis
 - dysrhythmias
 - signs of SNS activation:
 - flushed
 - cardiac irregularities
 - sweating
 - ↑ bleeding at surg sites
 - ↑ ed ETCO₂

(not dark or cherry red blood!)

Fresh Gas Flow Requirements

- approximated resting O₂ consumption can be calculated:

$$\text{O}_2 \text{ consumption (ml/min)} = 10 \times (\text{weight}^{0.75}) \text{ weight in kg}$$

Body weight (kg)	O ₂ consumption (ml / min)
5	33
10	56
20	95
40	160

Anaesthetic Machine Checks

- 3 levels:
 - level 1
 - level 2
 - level 3

Level 1

- = detailed check performed by trained service personnel of all systems before being put into use
- Must be done on new systems and systems after service or repair

Level 2

- performed at the beginning of each anaesthetic list
- responsibility of anaesthetist but may be delegate to qualified person

Level 3

- before starting anaesthesia for each pt:
 - check vaporiser if it has been changed
 - check breathing system
 - check IV or LA devices
 - check other apparatus eg suction