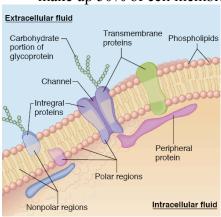
General Physiology

Table of Contents


Cell Membrane	2
Lipid Bilayer	2
Function of CM Proteins	2
Underlying CM	2
Intercellular Connections	3
Adhesive type Connections	
Transfer Type Connections	
Transport Across Cell Membranes Exocytosis/Endocytosis	
Diffusion	
Osmosis	
Gibbs-Donnan Effect	
Ion Channels	
Na/K/ATPase	
Secondary Active Transport	
•	
Organelles	
Mitochondria	
Endoplasmic Reticulum	
Ribosomes	
Cell Receptors & Secondary Messengers within Cells	
Type 1 - Ionotropic	
Type 2: G Proteins & P Protein Coupled Receptors (GPCRs)	
Type 3 - Kinase linked	13
Type 4 - Nuclear Receptors	
Intracellular Calcium as a 2 nd Messenger	14
General Prinicples	15
Definitions	
Intracelluar Fluid (ICF) & Extracellular (ECF)	
Control of Cell Volume	16
Changes to Tonicity	16
Mole	16
Water	17
Electrolytes	
pH & Buffering	
Tonicity	
Non ionic Diffusion	17
TransMembrane Potential	18
Concentration of Ions	
Genesis of Membrane Potential	
Resting Membrane Potentials	
Energy Production	10
Oxidation	
UAIUALIUII	

Cell Membrane

- Made of
 - o Phospholipids
 - o Proteins
 - o Cholesterol Found in eukarocytes ie cells with nuclei
- Cell membrane = 7.5nm thick semi permeable structure

Lipid Bilayer

- Fluid rather than solid
- Phospholipids have:
 - o eg phospha-tidyl-choline & phospha-tidyl-ethanol-amine
 - Hydrophilic head
 - Water soluble
 - Exposed to aqueous exterior & interior
 - Glycerol backbone
 - Fatty acid tails
 - Hydrophobic
 - Meet in middle of cell membrane
- Proteins can be either:
 - o Integral ie pass through bilayer eg ion channels
 - Peripheral = straddling
 - → make up 50% of cell membranes mass

Source: Barrett KE, Barman SM, Boitano S, Brooks HL: Ganona's Review of Medical Physiology: www.accessmedic

Function of CM Proteins

- 1. Structural
- 2. Carriers for **facilitated diffusion** (ie down electrochemical gradient)
- 3. Pumps for ion active transport
- 4. **Ion channels** (diffusion down electro- or chemical gradient or both; eg K-"leak" channels)
- 5. **Receptors** for chemical messengers (ie hormones, neurotransmitters, autacoids...)
- 6. Enzymes
- 7. Glycoproteins involved in AB processing or *anti*coagulation (eg the mucopolysaccharide glycocalyx of the endothelium which repels clotting factors + PLT's \rightarrow helps prevent blood from clotting in *intact* blood vessels)

Underlying CM

- Basement membrane or basal lamina
- Made up of:

- Collagens
- o Laminins
- Fibronectins
- Proteoglycans
- Function to bind cells & regulate development & growth

Intercellular Connections

- 2 main types:
 - o adhesive type connections
 - o transfer type connections

Adhesive type Connections

- tight junctions:
 - o aka zona occludens
 - o attachements between cell membrane at apical margins
 - o differ in leakiness:
 - tight = impermeable eg distal renal tubule for water, BBB, bladder
 - leaky = paracellular permeable eg prox renal tubule, small intestine, liver
 - o help maintain cell polarity & prevent movement of proteins in plane of CM
 - is a protein inserted into apical CM will stay there
- zonula adherens:
 - o lies below tight junction ie almost a continuous structure
 - o contains cadherins
 - o acts as site for attachments of cellular microfilaments
- desmosomes:
 - o patches of apposed thickenings of membranes of adjacent cells
- hemidesmosomes:
 - o attach cells to underlying basal lamina
 - o attached intracellular to filaments
 - o contain integrins (not cadherins)
- focal adhesions:
 - o also attach to basal laminae
 - o labile
 - o associated with actin filaments inside cell
 - o have role in cell movement

Transfer Type Connections

- GAP junctions:
 - Six subunit protein connections
 - o Between cells which are apposed
 - o Form low electrical resistance channels
 - o Permit intercellular communication
 - → eg current flow & electrical coupling between myocardial cells via ions, aa, sugars
 - o @GAP junction Intercellular space narrows from $25 \Rightarrow 3$ nm
 - o diameter of junctions regulated by:
 - pH
 - voltage
 - Intracellular calcium

Transport Across Cell Membranes

- Water, ions, substances can cross cell membrane by:
 - o Bulk flow:
 - Aka ultrafiltration
 - Eg fluid movement between capillaries & interstitium 2nd to Starlings forces
 - If bulk flow of solvent then also drags some solute
 - \rightarrow = solvent drag
 - Exocyotosis & endocyotosis
 - o Diffusion:
 - Down gradients though:
 - Directly through membrane
 - Through protein channels:
 - o Voltage
 - o Ligand gated
 - o Carrier mediated diffusion
 - ie where protein binds & carries
 - facilitated diffusion = when item moved along their gradient (chem or electrical) no energy is needed eg GLUT transporters
 - Active transport
 - Primary
 - hydrolysis of ATP
 - uniports = transport 1 substance
 - symports = need to bind more than 1 substance for movement to occur
 - antiports = exchange one for another
 - Secondary active
 - Counter-transport

Exocytosis/Endocytosis

Exocytosis

- Vesicle containing material sent to cell membrane
- Fusion with CM
- Ca dependant exocytosis
- 2 pathways:
 - o nonconstitutive pathway =
 - aka regulated pathway
 - protein from Golgi enter secretory granules
 - process of prohormones to hormones occurs before exocytosis
 - o constitutive pathway =
 - prompt transport of proteins to cell membrane in vesicles with no processing

Endocytosis

- = reverse of exocyotis
- different methods:
 - o phagocytosis =
 - cell eating
 - material makes contact with CM which then invaginated
 - invagination pinched off ⇒ engulfed material in vacuole with intact CM
 - o pinocytosis =
 - cell drinking
 - vesicles much smaller
 - substance ingested in solution
 - o clathrin mediated endocytosis =

- where protein clathrin accumulates in CM
- clathrin forms a geometric array that sorrounds endocytotic vesicle
- GTP binding protein dynamin involved at neck
- When vesicle formed clathrin falls off & is recycled
- Responsible for internalisation of many receptors & ligands bound to them eg LDL, nerve growth factor
- o Caveolae =
 - Areas rich in cholesterol & sphingolipids
 - Caveolin found in CM (similar to clathrin)
 - Dvnamin also involved
- Nonclathrin/noncaveolar endocyotosis

Diffusion

- Usually down chemical =/- electrical gradient ie no energy needed
- Summarized by Fick's equation

$$J = -D.A. (\Delta c) (\Delta x)$$

J = net rate of diffusion

D = diff coefficient and is ~ sol / mw (Graham's Law)

A = area

c = concentration

x = thickness of membrane

Osmosis

- = diffusion of solvent molecules into a region with higher conc of a solute to which the membrane is impermeable
- osmotic pressure = pressure necessary to prevent solvent migration into its compartment
- osmotic pressure =

$$p = \underbrace{nRT}_{V} \qquad \begin{array}{l} \text{n = number of particles} \\ \text{R = gas constant} \\ \text{T = temp} \\ \text{V = volume} \end{array}$$

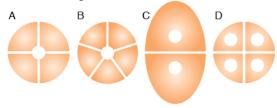
 \therefore if T held constant: p \propto number of particles/unit of volume

Gibbs-Donnan Effect

- definition:
 - o semipermeable membrane separates 2 solutions
 - o 1 solution contains non diffusible charged species
 - o THEN the distribution of all other diffusible univalent cations & anions across the membrane is altered in predictable manner ie at equilibrium the conc ratios are equal
- More complex for divalent ions due to protein binding
- NET effect:
 - On side of non-diffusible ion = more ions
 - \circ : if situation is intracellular \Rightarrow osmotic movement of water into cell \Rightarrow cell rupture

→ eg –ve change intracellular protein

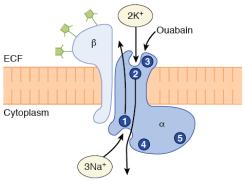
this process opposed by Na/K/ATPase


importance of Gibbs-Donna effect

- maintain & stabilise cell volume:
 - o balance of:

- intracellular: non diffusible proteins & inorganic phosphates
- ECF: non diffusible Na due to Na/K/ATPase pumping it out & low membrane permeability
- = Double Donnan effect
- o if Na/k/ATPase stops working \Rightarrow influx of Na & water \Rightarrow cell rupture
- contribution to plasma oncotic pressure:
 - o equilibrium ⇒ alteration distribution of other ions across CM
 - $\circ \Rightarrow$ small NET \uparrow in ions in plasma
 - $\circ \Rightarrow \uparrow \uparrow \text{plasma}$ oncotic pressure in capillary blood ie 15 to 25mmHg
- contributes to resting membrane potential:
 - o small effect
 - o small amount of:
 - intracell: ↑cations
 - ECF: ↑anions

Ion Channels


- Channels exist
 - o specific for K+, Na+, Ca,+ Cl-
 - o non specific cations & anions

Source: Barrett KE, Barman SM, Boitano S, Brooks HL: Ganong's Review of Medical Physiology: www.accessme Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

- A = K channels mostly tetramers
- B = Ach receptor. Each subunit contributes to channel
- C = Cl- channels = dimers with intracellular pore in each subunit
- D = tetramers with intracellular channel in each subunit

Na/K/ATPase

e: Barrett KE, Barman SM, Boitano S, Brooks HL: ng's Review of Medical Physiology: www.accessmedicine.com right © The McGraw-Hill Companies, Inc. All rights reserved.

- Na-K Pump
- = enzyme which catalyses the hydrolyses of ATP \Rightarrow ADP
- = heterodimer made of:
 - \circ α subunit =
 - MW ~ 100K
 - Transport of Na/K

- Spans cell membrane x10
- Amino-carboxyl terminals intracellular
- \circ β subunit =
 - MW ~55K
 - Glycoprotein
- Movement of Na & K major energy process of body:
 - Cells 24% energy used
 - Neurons 70% energy used
- both subunits extend thru CM
- separation of subunits kills pump
- when Na binds to α subunit \Rightarrow ATP also binds and converted to ADP
- energy used to extrude 3 Na, and move 2 K into cell or each ATP
- actively inhibited by ouabain

→ related to digitalis glycosides

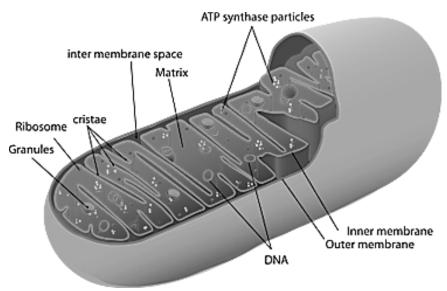
• found in all parts of body

Functions

- functions include:
 - o genesis & maintainence of RMP
 - o stability of cell volume
 - o transport of substances across membranes (primary & secondary active)
 - hydrogen in secretion in kindey
 - o signal transduction

Regulation

- †intracellular Na
- 2nd messengers produced in cells eg cAMP, DAG, arachidonic acid derivates
- thyroid hormones ⇒ ↑activity & ↑number of Na/K pumps
- aldosterone \Rightarrow \tag{number of pumps}
- dopamine inhibits pump in kidneys \Rightarrow natriresis
- insulin ⇒ ↑activity


Secondary Active Transport

- = active transport of Na coupled to transport of other substances
- eg Na/K/ATPase creates an elec-chem gradient by pumping Na out of cells into ECF:
 - o eg mucosal cells of small intestine: symport which transports glucose only if Na also attached and moves at same time
 - o myocardium- NCX pump

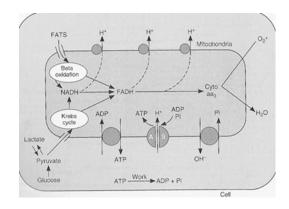
Organelles

Mitochondria

- mitochondria have own genome & ability to manufacture own RNA & proteins
- their ribosomes = 70S type (30S & 50S) ie same as bacteria
 - → rest of cell has 80S ribosomes

Structure

- 1-10um
- outer membrane:
 - o encloses whole organelle
 - o contains several integral proteins = porins
 - o porins form large aqueous channels which allow passage of movement of molecules up to 5000D
- intermembrane space:
 - o between outer & inner membrane
 - o chemically equivalent to cells cytosol
 - o contains cytochrome-c
- inner membrane:
 - o no porins
 - o controlled permeability via transporter proteins
 - o proteins have diff functions:
 - proteins carrying out oxidative reactions of resp chain
 - ATP synthase makes ATP in matrix
 - Transport proteins
 - Protein import machinery
- Cristae:
 - o Formed by folded inner membrane
 - o Vastly ↑s surface area for ATP production
 - o Cells which more active eg mm have more cristae
- Matrix:
 - o Space enclosed by inner membrane
 - Impt in ATP production
 - o Contains highly conc mixture of
 - hundreds of enzymes
 - mitochon ribosomes (70S)
 - tRNA
 - several copies of DNA genome
 - o major function of enzymes =
 - oxidation of pyruvate & Fas
 - citric acid cycle


Function

- main = ATP production which needed for cellular metabolism
- other functions:
 - o cell signalling
 - o apoptosis

- o cellular differentiation
- o cell growth

Oxidative Phosphorylation - Mitcochondria Energy Production

- mitochon found in high conc in cells with high metabolic demands eg myocardium (23% of cell), brown fat (neonate)
- exercise \(\gamma \) numbers
- OP = production of ATP associated with oxidation by the flavoprotein cytochrome system in mitochondria

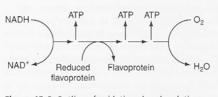
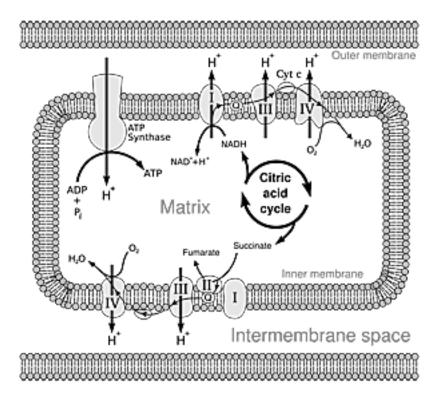



Figure 12.6 Outline of oxidative phosphorylation

- ATP formed in electron transfer chain:
 - o Substrate diffuses into mitochon cytoplasm
 - Hydrogen removed by a dehydrogenase
 - o NAD carries hydrogen to respiratory chain
 - Hydrogen ionises and protons pass along series of carrier molecules across insulating membrane (inner membrane of mitochondria – forms cristae)
 - Movement of protons creates a electrochemical gradient for transport of protons from intermediate space back into matrix ⇒ this drives a reversible ATPase in inner membrane (ATP synthase)
 - ATp synthase: ADP + Pi \Rightarrow ATP
 - o @end:
 - ATP produced
 - Reduction of O2 to water catalysed by cytochrome oxidase

→ cyanide inhibits this oxidase : inhibits OP in mitochon

→ O2 required to oxidise NADH

- Eg's of carrier molecules in electron transfer chain
 - o Flavoprotein
 - o Cytochromes A, A3, B, C, C1
 - o Ubiquinone
 - Several iron sulphide proteins
- OP depends on:
 - Adequate supply of ADP +ve feedback loop eg \uparrow ATP utilisation $\Rightarrow \uparrow$ ADP $\Rightarrow \uparrow$ OP
 - o Rate of delivery of fats, lactate, glucose to interior of mitochon
 - o Availability of O2:
 - Pasteur point = 1-2mmHg ie point below OP cannot occur
- : cardioresp works in harmony to ensure o2 reaches cells
 - o defined by oxygen flux equation:

$$DO_{2body} = CaO_2 \times CO$$

- lack of oxygen causes:
 - o nothing to scavenge H+ at end of transfer chain
 - o transfer chain ceases
 - o build up of reduced compounds ⇒ inhibits TCA cycle ⇒ inhibition of glycolysis

→ but glycolysis continues as lactate dehydrogenase removes reduced compounds

Endoplasmic Reticulum

- complex system of tubules in cytoplasm
- tubule walls made of membrane
- rough ER =
 - o ribosomes (granules) attaches to cytoplasmic side of membrane
 - o involved in protein synthesis:
 - folding polypeptide chains
 - form S-S bonds
- smooth ER =
 - o attached ribosome absent (but free ribosomes in cytoplasm)
 - o dunction:
 - site of steroid synthesis
 - detoxification processes

sarcoplasmic reticulum = impt role in skeletal & cardiac mm functioning

Ribosomes

- eukaryotes =
 - 80S 60S & 40S subunits
 - o 22-32nm
 - o site of protein synthesis
 - o contain
 - many proteins &
 - at least 3 ribosomal RNAs
 - o ribosomes attached to ER synthesize proteins for eg
 - hormones for secretion
 - proteins seregated in lysosomes
 - proteins in cell membranes
 - o free ribosomes in cytoplasm:
 - protein in Hb
 - protein in mitochondira
- Golgi apparatus involved in processing proteins found in ribosomes

Cell Receptors & Secondary Messengers within Cells

- Extra-cellular ligands = 1st messangers
- Intracellular mediators = 2^{nd} messangers

Types of receptors:

- J F	Type 1	Type2	Type3	Type4
	<u>Ligand-gated ion ch's</u> (ionotropic)	G-prot coupled (metabotropic)	Kinase-linked	Nuclear
Location	membrane	membrane	membrane	intracellular
Effector	ion channel	Ch or enzyme	enzyme	gene transcription
2 nd msgr		c-AMP/c-GMP IP3 / DAG		
Coupling	direct	G-prot	direct	via DNA
E.g.'s	n-AchR GABAA NMDA	m-AchR adrenoceptors opioid R's	Insulin growth factor Cytokine r's EPO	steroid, thyroid H receptors
Time	millisec's (Fast synaptic)	seconds	hrs	hrs
Structure	of subunits around	Monomeric with 7 transmembrane helices	_	separate R and DNA binding domains.

Type 1 - Ionotropic

• See prev notes on NaKATPase & ion channels

Type 2: G Proteins & P Protein Coupled Receptors (GPCRs)

- GPCR = monomer compromising 7 membrane spanning segments
- One of intracellular loops = larger & interacts with G protein
- : GPCR couple to intracellular effector systems via a GP
 - → G Protein 100: 1 GPCR (amplification system)
- G proteins =
 - o membrane proteins coupled to specific receptors
 - → aka metabotropic receptors
 - o non selective workhorses for GPCR they are couple to.
 - \rightarrow = go between from receptor (selective) to effector (enzyme or ion channel)
- GP consist of 3 subunits:
 - o Alpha
 - bound to GDP
 - possesses intrinsic GTPase activity
 - o Beta
 - o Gamma
- Process of activation:
 - \circ Ligand bind to GPCR \Rightarrow GDP on alpha subunit is exchanged for GTP
 - O Alpha subunit separates from combined β & gamma subunit
 - → ß & gamma subunit tightly bound to membrane
 - o Alpha-GTP complex free to activate an effector eg membrane enzyme or channel
- Activation terminated
 - o when bound GTP hydrolysed to GDP
 - intrinsic GTPase ability of alpha subunit is upregulated when bound to target protein
 - o alpha (& bound GDP) then reattach with beta-gamma subunits
- 1400 combinations of alpha, beta, gamma combinations to control different effectors
- complex activation process ⇒ slower onset than ionotropic receptors eg GABA, n-ACH = milliseconds

Targets of GPs

G protein can activate:

- adenylate cyclase (AC) or Guanylate cyclase (GC) \Rightarrow c-AMP or c-GMP formation
- phospholipase C (PLC) on inner surface of CM

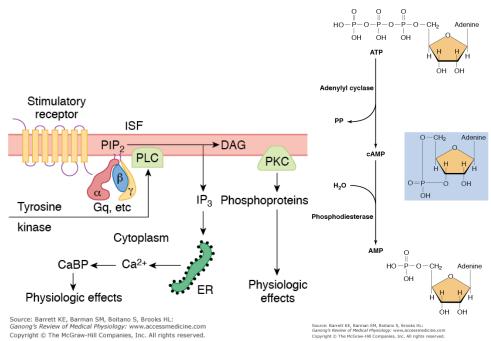
c-AMP

- = cyclic adenosine 3'5'monophosphate
- cAMP = physiologically active
- c-AMP formed from ATP by adenylyl cyclase
- inactivated by conversion to 5'AMP by phosphodiesterase

→ can be inhibited by methylxantines eg theophylline

c-GMP

- = cyclinc guanosine monophosphate
- impt in vision
- guanylate cyclases = family of enzymes which catalyse formation of cGMP


PLC

• catalyse hydrolysis of membrane lipid PIP2 to

- o inositol phosphate (IP3) or
- o diacylglycerol (DAG)
- IP3 diffuses to ER where binds to IP3 receptor

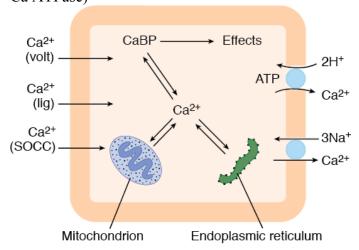
 \rightarrow = ligand gated Ca channel

• DAG – stays in cell membrane where it activates protein kinase C

Types of G Proteins

- **Gs**: → \uparrow AC(or GC) → \uparrow c-AMP eg of substances causing Gs activation:
 - o ADH.
 - o adrenalin(beta receptors),
 - o adenosine (A2),
 - o ANP,
 - o glucagon,
 - o histamine(H2)
- **Gi**: $\rightarrow \downarrow$ AC (or GC) $\rightarrow \downarrow$ c-AMP
 - o angiotensin (AT2),
 - o adenosine (A1),
 - o alpha-2 and
 - o opioid receptors.
- G_{α} : $\rightarrow \uparrow PLC \rightarrow IP3 + DAG$ eg noradrenaline (alpha1), histamine H1,
- Gt: → stim c-GMP phosphodiesterase in photoreceptors
- Go: → involved in gating of ion ch's , ↑ concentration in brain

Type 3 – Kinase linked


- Eg
 - o insulin like growth factor 1 (IGF-1)
 - o Epigermal growth factor (EGF)
- Single membrane spanning domain
- Intracellular tyrosine kinase domains
- Ligand binds to tyrosine kinase receptor⇒
 - o Dimerization of 2 similar receptors
 - $\circ \Rightarrow$ partial activation of intracellular tyrosine kinase domains

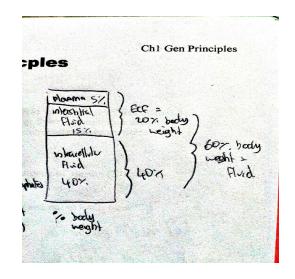
- $\circ \Rightarrow$ cross phosphorylation to fully activate each other
- $\circ \Rightarrow$ production of transcription factors

Type 4 - Nuclear Receptors

Intracellular Calcium as a 2nd Messenger

- Free Ca2+ conc in cytoplasm = rest 100nmol/L
- Ca conc in ECF = 1,200,000 nmol/L
 - → ie marked inwards conc gradient
- : most of intracellular Ca stored at v high conc in ER & other organelles
- Ca can enter cell by variety of methods:
 - Down gradient
 - Ligand gated or voltage gated channels
 - Stretch channels
- Secondary messengers ⇒ ↑intracell Ca conc by:
 - o Ca release from intracellular stores
 - IP3
 - major 2nd messenger with this effect
 - IP3 receptor on ER
 - o ↑ed entry Ca into cells
 - SOCCs (store-operated Ca channels)
 - Transient release Ca from internal stores ⇒ opening SOCC on cell membrane
 - Influx of Ca replenishes & refills ER
- Movement of Ca out of cell against conc gradient:
 - o Active transport membrane Ca ATPase
 - o 2nd Active transport
 - NCX (3 Na in for each Ca out)
 - Driven by Na gradient
- Movement of Ca into internal stores via action SERCA pump (sarcoplasmic or endoplasmic reticulum Ca ATPase)

Source: Barrett KE, Barman SM, Boitano S, Brooks HL: Ganong's Review of Medical Physiology: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.


General Prinicples

Definitions

- **Osmolarity**: = no of osmoles of solute per *litre* of solvent:
 - o altered by temp changes + vol of solute
- **Osmolality**: = no of osmoles of solute per *kg* of solvent:
 - o independent of T changes or vol of solute
- Tonicity:
 - = the *effective* osmolality of a solution.
 - o = to the sum of the []'s of the solutes which have the capacity to exert osmotic force across the membrane concerned.

Intracelluar Fluid (ICF) & Extracellular (ECF)

- ICF cannot be measure directly
- Derived from TBW ECF
- TBW measured by dilution principle using Deuterium oxide (D20 = a heavy water)
- ECF measured with inulin
- TB Water = 60% of total body weight
- body water can be further subdivided via simple or complex models:
 - o complex (60% broken down into)
 - ICF = 55%
 - ECF = 45% which broken down into
 - 20% interstitial
 - 7.5% intravascular
 - 7.5% bone
 - 7.5% dense CT
 - 2.5% transcellular fluid eg CSF, urine in bladder etc
 - o simple (% = breakdown of 60%) (bracketed = fraction of 60%)
 - 40% ICF (2/3)
 - 20% ECF (1/3)
 - 5% plasma (1/4)
 - 15% interstitial (3/4)
- : 70kg person:
 - \circ TBW = 42 litres
 - \circ ICF = 28 litres
 - \circ ECF = 14 litres:
 - 3.5 litres plasma
 - 10.5 litres interstitial fluid

ECF = majority Na & Cl ICF = majority:

- K (most ~150mmol/L)
 - Misc phosphates
- Protein
- (small amount Na)

Other Body Weights

- weights:
 - o 60% fluid
 - intracellular 40%
 - extracellular 20%
 - o 17% protein
 - o 15% fat
 - o 7% mineral

Control of Cell Volume

- H20 can cross CMs freely : could lead to:
 - Change ECF tonicity
 - o Change in cell volume
 - →but doesn't
- Cell contain sig conc of anions which non-diffusable
 - → proteins & organic phosphates
- Creates Donnan effect across CM ⇒ intracellular anions drawing water into cell ⇒ cell rupture if nt counterbalanced!
- Counterbalance =
 - o Donnan effect in opposite direction set up by Na in ECF
 - o Na in ECF effectively non diffusible due to Na/K/ATPase pump & ↓ed Na CM permeability
- \rightarrow = double Donnan effect \Rightarrow stable cell volume
- → reliant on Na/K/ATPase

Changes to Tonicity

- Acute change in ECF tonicity ⇒ acute change in cell volume
- Adaptation can occur with time:
 - o Cell adapt to minimise disruption caused by change in ECF tonicity
 - o Done by changing intracellular solute content
 - ie lose or gain solute to minimise volume changes
- Eg ECF hypertonicity:
 - $\circ \Rightarrow IC dehydration$
 - o cell will gain solute from ECF or \(\rangle \text{production of own solute} \)

Mole

- = gram molecular weight of a substance
- 1 mol NaCl = 23 g + 35.5 g = 58.5 g

Water

- H20 has a dipole moment:
 - o o2 pulls away electrons from the hydrogen atoms \Rightarrow slightly polar
 - o allows water to dissolve variety of charged atom & molecules
 - o allows H20 H20 bonding via Hydrogen bonds
- hydrogen bond network causes:
 - o high surface tension
 - o high heat vaporisation & heat capacity
 - o high dielectric constant

Electrolytes

- eg NaCl = molecules which dissociate in water to:
 - \circ Na+ = cation
 - \circ Cl- = anion
- Tend not to reasociate in water due to elec charge

pH & Buffering

- pH = logarithm to the base 10 of the reciprocal of the H+ concentration \rightarrow = -ve log of H+ conc
- water = pH 7
- gastric acid = 2
- pancreatic enzyme = 8
- buffer = substance which has ability to bind or release H+ in solution thus normalising pH of solution
- isohydric principle = all buffer pairs in homogenous solution are in equilibrium with same H+ conc

Tonicity

- = osmolality of a solution relative to plasma
- solution which same osmolality as plasma = isotonic
- hypertonic = greater osmolality than plasma
- all solutions which initially isosmotic with plasma would remain isotonic but solutes diffuse into cells/metabolised —ie same osmotic pressure or freezing point depression
 - o 0.9% saline = remains isotonic as net movement of osmotically active particles
 - o 5% gluc =
 - isotonic initially
 - gluc then metabolised ⇒ hypotonic solution
- Na+, Cl- & HCO3- provide most impt contribution to osmolal conc of plasma (270 of the 290mOsm/L)

Non ionic Diffusion

- Some acids/bases can cross membrane in undissociated form and not in ionic form
- .: move across as undissociates and then dissociate
- = non ionic diffusion

TransMembrane Potential

Concentration of Ions

• resting cell membrane potential = -70mV

Ion	Inside Cell	Outside Cell	Equilibrium Potential mV
Na+	15	150	+60
K+	150	5.5	-90
Cl-	9	125	-70
Ca	100nanomol	2.2-2.5 (1.15-1.3)	
Mg	10mmol	0.75-1mmol	
HCO3	10	20-30	
рН	7.1	7.4	

- Na:
 - o Concentration & elec gradient is inward
 - o ∴ expect slow gain of intracellular Na
- K:
 - o Conc gradient outward
 - o Elec gradient inward
 - o But conc gradient is greater : expect slow outward movement
- Cl-:
 - Conc gradient inward
 - o Elec gradient neutral

Genesis of Membrane Potential

- Na,K, ATPase:
 - o Uses ATP to pump K back into cell
 - o Keeps intracellular Na low
 - 3Na out; 2 K in \Rightarrow : contributes to membrane potential →= electrogenic pump

Resting Membrane Potentials

- skeletal mm -90mV; threshold -70mV
- cardiac mm -80mV; threshold -65mV
- Neurones -70mv; threshold -55mV
- Cardiac pacemaker cells -60mV
- smooth mm wandering baseline but average -50mV

Energy Production

- large amounts of energy released when high energy phosphate compound bonds are hydrolysed
- also see low energy phosphates
- ATP = most impt high energy phosphate:
 - \circ ATP \Rightarrow ADP \Rightarrow AMP →all steps create energy

Oxidation

- Oxidation =
 - o combination of a substance with O2 or
 - o loss of a hydrogen or
 - o loss of electrons

 \rightarrow opposite = reduction

- reduction reactions:
 - \circ NAD+ \Rightarrow NADP+ \Rightarrow NADH \Rightarrow NADPH
- Oxidative phosphorylation:
 - o Energy from a proton gradient across mitochondrial membrane
 - o Flavoprotein-cytochrome systems creates H+ movement from inner to outer lamella of mitchondria
 - Return movement of proton down proton gradient ⇒ ATP
- 90% o2 consumption in basal state = mitochondrial

→80% this coupled to ATP synthesis