
Haematology

Table of Contents

Haematology	
Haemostasis & Thrombosis	2
Endothelium	5
Coagulation	7
Classic Coagulation Cascade	7
Thrombosis	12
Blood	14
Haemopoiesis	14
Blood Types	20
Anaemia	22
Classification	22
Haemostasis & Thrombosis Endothelium agulation Classic Coagulation Cascade Cell Based Theory of Coagulation Fibrinolysis Ood Haemopoiesis Cod Types Classification Cause sessment of Coagulation, Platelet Function & Fibrinolysis asma Proteins Ood Products & transfusion Medicine Blood Products Complications of Transfusion Massive Transfusions	30
Plasma Proteins	34
Blood Products & transfusion Medicine	36

Haemostasis & Thrombosis

- haemostasis & thrombosis inter-related & dependant on:
 - endothelium
 - o platelets
 - o coagulation cascade
- haemostasis =
 - o physiologic process
 - o maintain blood in a fluid, clot free state in norm vessels
 - o can produce rapid localized plug at site of inj if required
- thrombosis =
 - o pathological
 - o inappropriate activation of haemostatic mechanisms in
 - •uninjured vessels
 - thrombosis in minor injury

Normal Haemostasis

- following injury:
 - o arteriolar vasoconstriction:
 - •reflex neurogenic mechanism
 - •augmented by local secretion of endothelin

→potent endothelium derived VC

- effect only transient
- stops exsanguination in massive injury
- •slows flow to allow platelet & coag cascade to initiate
- o platelet adhesion & activation:
 - subendothelial ECM exposed which highly thrombogenic
 - platelets adhere
 - •platelets activate = change shape, release secretory granules
 - ■platelet aggregation ⇒ plug
 - procoagulant activity
 - →primary haemostasis
- o activation of coagulation cascade
 - •driven by tissue factor:
 - =membrane bound procoagulant lipoprotein

- synthesized by endothelium & exposed after injury
- •culmination of cascade = activation of thrombin
- thrombin :
 - fibrinogen to insoluble fibrin ⇒fibrin deposition
 - further platelet aggregation & granule release

⇒= secondary haemostasis

o activation of counter-regulatory mechanisms eg t-PA which restrict clot to specific site

Platelets

- Platelets activated once contact with ECM beneath injured ECs
- Activation:
 - Adhesion [no ATP required]
 - Shape change [active process]
 - Secretion (release reaction) [active]
 - o Aggregation

Adhesion

- Mediated through vWF
- Bridges gap between platelet receptors (mostly glycoprotein Ib) & exposed collagen

- Other adhesion reactions but vWF only one strong enough to overcome shear force of blood flow
- Deficiency vWF = vW disease
- Deficiency GpIb receptor = Bernard-Soulier Syndrome

Platelet Granule Activation/Secretion

- Both granules release shortly after adhesion
- Alpha granules contain:
 - o P –selectin = adhesion molecule on their membranes
 - o Contain fibringen, fibronectin, factor V, VIII, PDGF, transforming growth factor B
 - o vWF
- Dense bodies contain:
 - o ADP & ATP
 - Ionized Ca
 - o Histamine
 - Serotonin
 - Adrenaline
- Dense body release impt:
 - o Ca required in coagulation cascade
 - \circ ADP =
 - ■Potent ↑platelet aggregation
 - †ed release of ADP from other platelets
- platelet activation ⇒ surface expression phospholipid complexs:
 - o nucleation & binding site for Ca & clotting factors in intrinsic coag cascade

Platelet Aggregation

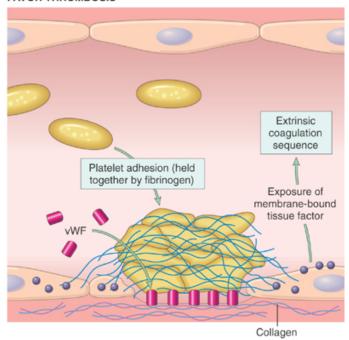
- stim of aggregation =
 - o ADP
 - Thromboxane A2 from platelets
 - \rightarrow together \Rightarrow autocatalytic reaction \Rightarrow aggregating platelets \Rightarrow primary plug
- Primary plug = reversible
- Thrombin from coag cascade binds to PAR (platelet surface receptors)
 - →further potentiates aggregation while also creating fibrin ⇒ cementing plug in place

- At same time platelet contraction \Rightarrow viscous metamorphosis irreversible definitive secondary plug
- : thrombin essential for thrombi
- noncleaved fibrinogen also impt cofactor in aggregation:
 - o ADP activation ⇒ change in conformation of platelet GpIIb-IIIa receptors to allow fibrinogen to bind
 - o Fibrinogen binding \Rightarrow connection of multiple platelets \Rightarrow large aggregates →GpIIb-IIIa deficiences ≈ Glanzmann thrombasthenia bleeding disorder & therapeutic target
- Erythrocytes & leukocytes also aggregate in haemostatic plugs:
 - o Leukocytes adhere via P selectin ⇒ contribute to inflam response

Summary Platelet Effects

- Adhere to ECM at site of endothelial injury ⇒ activated
- On activation:
 - o Secrete granules eg ADP
 - Synthesise TxA2
- Platelets expose phospholipid complexes which imp in intrinsic coag pathway
- Injured or activated ECs expose tissue factor ⇒ extrinsic coag pathway
- ADP \Rightarrow formation of primary plug
- Primary plug converted to secondary plug by
 - o ADP
 - o Thrombin
 - \circ TxA₂
- Fibrin deposition stabilises & anchors the aggregated platelets

PGI₂ & TxA₂


- PGI2 =
 - o Endothelium derived
 - o VD
 - Inhibit platelet aggregation
- TxA2=
 - o Platelet derived
 - o VC
 - Activates aggregation
- Aspirin blocks COX pathway $\Rightarrow \downarrow TxA2$ synthesis $\Rightarrow \downarrow aggregation$

Endothelium

endothelium modulate opposing factors of haemostasis

INHIBIT THROMBOSIS Inactivates factors Xa and IXa Proteolysis of factors Va and VIIIa (requires protein S) Fibrinolytic Inactivates cascade thrombin Inhibit platelet Inactivates tissue aggregation factor-VIIa complexes Antithrombin Thrombin PGI₂, NO, and III adenosine diphosphatase Endothelial effects Heparin-like Thrombin molecule receptor

FAVOR THROMBOSIS

Tissue factor pathway Thrombomodulin inhibitor

Kumar et al: Robbins & Cotran Pathologic Basis of Disease, 8th Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

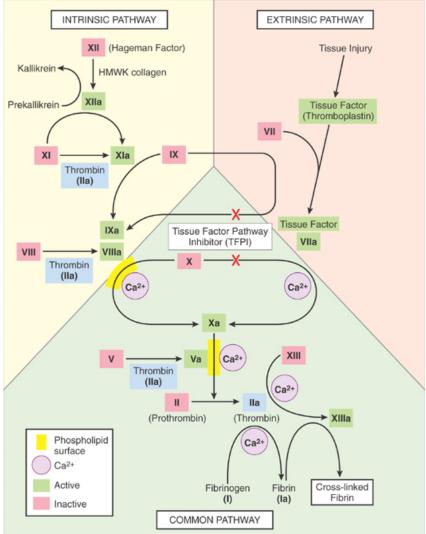
Antithrombotic Properties

- essential to localise coagulation to where is a problem ie where original platelet plug was formed
- occurs by:
 - o cascade of reactions limited to where platelets adhered
 - o series of inhibitors which restrict coag to site of injury:
 - circulating factors eg antithrombin & heparin molecules
 - endothelium derived factors eg TFPI
 - thrombomodulin system
 - → all described below
- antiplatelet effects:
 - o non activated platelets do not adhere to endothelium
 - o Endothelial cells secrete:
 - ■PGI₂ (endothelial prostacyclin) & NO:
 - Inhibit activated platelets from adhering to surrounding uninjured endothelium
 - Potent VDs
 - Inhibit aggregation
 - Synthesised by endothelial cells
 - Synthesis ↑ed by factors from coagulation cascade ie thrombin & cytokines
 - Adenosine diphosphatase:
 - Degrades ADP $\therefore \Rightarrow$ inhibit platelet aggregation
- Anticoagulant effects:
 - o Effects mediated by:

- ■Heparin like molecules:
 - Membrane associated
 - Interact with antithrombin III \Rightarrow
 - inactivate thrombin & other factors (serine proteases) eg factor 9,10,11,12
 - → why heparin useful to minimise thrombosis
- ■Thrombomodulin:
 - Specific endothelial thrombin receptor binds to thrombin
 - Converts it from procoagulant to **anticoagulant** which can activate
 - Activated protein $C \Rightarrow$ cleavage of factor Va & VIIIa \Rightarrow inhibit clotting \rightarrow factor V mutation \Rightarrow resistance to activated protein C \Rightarrow †thrombosis
 - Inactivates inhibitor of t-PA activator (ie \tautertape tPA action)
 - Protein C & S = Vit K dependant proteins
 - → : thrombomodulin mops up circulating thrombin preventing unwanted clots
- ■Tissue factor pathway inhibitor:
 - Secreted by ECs (and others)
 - Cell surface protein that complexes & inhibits
 - activated tissue factor
 - factor VIIa 0
 - factor Xa 0
- Fibrinolytic effects:
 - o endothelial cells synthesize tissue-type plasminogen activator (tPA)
 - $\circ \Rightarrow \uparrow$ fibrinolytic activity \Rightarrow clear fibrin deposits from endothelial surfaces

Prothrombotic Properties

- platelet effects:
 - o endothelial presence of vWF
 - →not specifically synthesised post inj, but is always there
 - o vWF = cofactor for platelet binding to collagen & other surfaces
- procoagulant effects:
 - o tissue factor induced by:
 - bacterial endotoxin
 - ■cytokines eg TNF, IL1
 - o tissue factor ⇒ activates extrinsic clotting cascade
 - o endothelium binds IXa, $Xa \Rightarrow \uparrow$ clotting cascade
- Antifibrinolytic Effects:
 - o ECs secrete PAIs (inhibitors of plasminongen activator) ⇒ fibrinolysis


Coagulation

- 2 theories of secondary haemostasis:
 - o classic coagulation cascade
 - o cell based theory of coagulation

Classic Coagulation Cascade

- Old concept of extrinsic & intrinsic pathway now valid only in vitro
- In vivo theory:
 - Initiation \Rightarrow amplification \Rightarrow propogation \Rightarrow stabilisation
- = conversion of inactive proenzymes ⇒ activated
- culminates generation insoluble fibrin

Focus on common pathway of serine proteases:

Kumar et al: Robbins & Cotran Pathologic Basis of Disease, 8th Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

Cell Based Theory of Coagulation

Initiation

- clotting initiated by events similar to extrinsic pathway
- cells (not in blood vessels walls) possess tissue factor:
 - o not found in vasc endothelium cells or free circulation
 - = glycoprotein which transmembrane
- initiation when these cells exposed to circulation coagulation proteins ie vasc endothelium disrupted
- Factors 7, 9, 10 generate priming amount of thrombin
- Thrombin:
 - o Responsible for initiation of coag process proper
 - Activatios platelets
 - o ↑assembly of coag factors on platelet surface

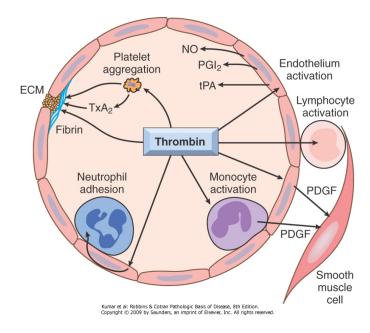
Amplification

- currently not enough thrombin generated to adequately trigger enough cleavage of fibrinogen to
- amplication involves feedback mechanisms:
 - o factor 7 +ve feedback loop
 - o cofactor 5 & 8 +ve feedback look to cleave more thrombin from prothrombin
 - o activation of F11 & F9

Propogation

- On surface of activated platelets:
 - o Ca used as co factor to ↑production of factor 10
 - o Factor 5 forms prothrombinase ⇒ rapid thrombin creation
- Ultimately thrombin ⇒ cleaves fibringen to fibrin

Stabilisation


- Need to stabilise clot
- Fibrin creation ⇒ max thrombin generation
- Thrombin then activates:
 - o factor $13 \Rightarrow$ cross link soluble fibrin to stabilise matrix
 - o thrombin-activateable fibrinolysis inhibitor (TAFI) which maintains clot stability

Factors

- factors (2,7,9,10,11,12) circulate in plasma as inactive precursors
- activated factors = proteases
- a reaction results from assembly of a complex held together by Ca ions on a phospholipid complex (generally on activated platelet surface)
- composition of reaction:
 - o enzyme = activated coagulation factor
 - o substrate = proenzyme form of coag factor
 - cofactor = reaction accelerator
- :: clotting remains localised to site assembly possible eg activated platelet or endothelium

Thrombin

- thrombin effects
 - o effects in final stage of coag cascade
 - o wide variety of effects on local vessels & inflam via:
 - binding to PARs (protease activated receptors)
 - belong to 7 transmembrane G protein coupled recptor family
 - thrombin clips extracellular end of receptor ⇒ tethered peptide ⇒ binds rest of receptor \Rightarrow conformational change of receptor \Rightarrow activate assoc G protein
 - →: thrombin autocatalyses receptor which explains small amount of thrombin \Rightarrow big effect

Factor 8

- =large protein made of 2 components:
 - o larger = F8R:AG component:
 - platelet adhesion to exposed subendothelial connective tissue
 - platelet aggregation
 - vWF binding (F8:WF)
 - o smaller F8:C
 - non covalently bound to larger component
- activated by thrombin
- F8a stabilises fibrin polymer by introducing Glu-Lys isopeptide bonds between adjacent fibrin monomers

Fibrinogen

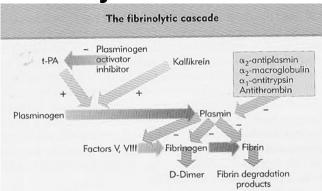
- =f2
- 3 pairs of polypeptide chains: alpha, beta, delta
- cross linked by S-S bonds
- thrombin releases fibrinopeptide A + B from α & β chains \Rightarrow fibrin monomer

\rightarrow by proteolysis

- fibrin monomer = cross linked alpha, beta delta chains
- fibrin polymer = after spontaneous hydrogen bonds between molecules of monomer

Calcium

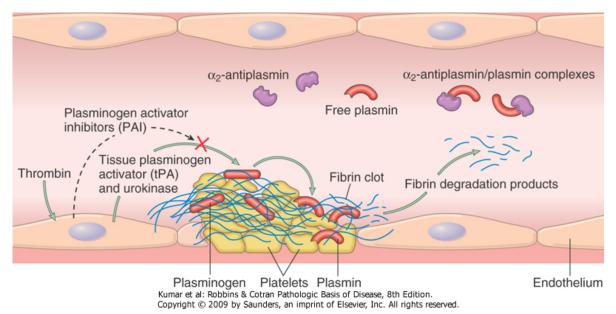
- essential cofactor in:
 - o factor 8
 - o factor 5
 - o factor 13 soluble fibrin \Rightarrow insoluble fibrin
- in-vivo serum Ca never get low enough to prevent coagulation as will arrest prior to this
- citrate toxicity ie hypocalcaemia: citrate in transfused blood rapidly converted to HCO3 in liver
- might need to give CaCl if prolonged QT or ST segment changes


Von Willebrand Factor

- = large multimeric plasma protein
- actue phase protein ⇒ ↑ed stress & surgery
- produced by:
 - o endothelial cells ⇒ stored in Weibel-Palade bodies
 - o megakaryocytes \Rightarrow stored in platelets α granules
- functions:
 - o adhesive protein:
 - main function
 - platelet adhesion to subendothelium:
 - vWF from Weibel Palade bodies bind to exposed collagen & act as middle man to allow platelet attachment
 - vWF exposes sites which can bind glycoprotein 1B of platelet
 - : coating of platelets over damaged area
 - or to another platelet:
 - ↑VWF binding to ↑complex GP 2b:3a in platelet membrane ⇒ plt:plt adhesion o protect factor 8:
 - circulates in plasma bound to F8 (F8R:AG)
 - prevents it from degradation by eg activated protein C

Anticoagulants

• vitamin K dependant clotting factors = 2, 7,9,10, protein C & S


Fibrinolysis

- This system works on top of factors already present to inhibit thrombosis
- =amplification system for limitation of clot size & dissolution of stable fibrin
- fibrinolysis = breakdown of fibrin by proteolytic enzymes
- plasminogen activated to ⇒ plasmin = key serine protease involved
- Fibrinolytic cascade:
 - o Plasmin generated from:
 - •factor XII dependant pathway OR
 - •bacterial product of streptokinase OR
 - ■plasminogen activators 2 types:
 - u-PA (urokinase-like PA)
 - o present in plasma & tissues
 - o activates plasmin in fluid phase
 - uses amplification loop
 - t-PA (tissue-type PA)
 - most impt
 - o synthesised by endothelial cells
 - o most active when attached to fibrin
 - affinity for fibrin means targeted to site recent clot
 - O Plasmin actions:
 - cleave fibrin & interferes with its polymerization ⇒ fibrin degradation products (also act as weak anticoagulants)
 D Dimers
 - trigger complement cascade
 - → plasmin then released into circulation again

 $[DIC = excess of free plasmin \Rightarrow large amount of D Dimer \Rightarrow activate factor 5 & 8]$

- o Functional plasmin activity restricted to site of thrombosis by:
 - ■t-PA activates plasminogen most effectively when bound to fibrin meshwork via lysine binding sites
 - •free plasmin rapid neutralized by serum a₂-anti-plasmin

- endothelium further modulates anticoag by
 - o releasing PAIs (plasminogen activator inhibitors)

→block fibrinolysis by inhibiting t-PA binding to fibrin

- o PAI release:
 - ↑ed by
 - Thrombin
 - Cytokines why severe inflam ⇒ intravascular thrombosis
 - •↓ed by:
 - protein C
- variations in fibrinolysis responses:
 - o more active in arterial circulation & deep veins, upper limbs
 - o pregnancy:
 - ↑fibrinogen & plasminogen levels
 - \t-PA, α2-plasma inhibitor

→overall fibrinolysis is reduced

- o neurohormonal stress (corticosteroids, catecholamines, ADH) ⇒ ↑transient ↑fibrinolysis
- o venous occlusion ⇒ ↑fibrinolysis explaining MOA of calf squeezers preventing DVT

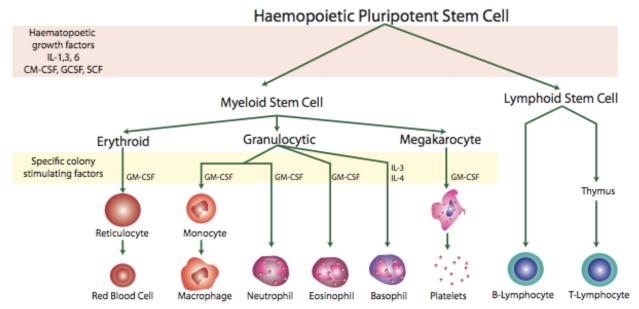
Thrombosis

- =inappropriate activation of clotting in uninjured vasculature or thrombotic occlusion following only minor inj
- Virchow's triad:
 - Endothelial inj
 - o Stasis or turbulent flow
 - Blood hypercoagulability

Endothelial Injury

- Clotting caused by:
 - Exposed subendothelial ECM & tissue factor
 - Adherence of platelets
 - o Imbalance of clotting factors
 - \PGI2, t-PA
 - ■↑PAI, ↑platelet adhesion molecules

- can cause thrombosis just be self
- injury following:
 - o haemodynamic stress eg HTN, turbulent flow over scarred valves
 - o bacterial endotoxins
 - o homocystinuria
 - o HCL
 - o Radiation
 - o Smoke


Flow Problems

- Norm flow = laminar:
 - o Cells flow in centre of lumen
 - o Outside clear plasma zone
- turbulence ⇒ eddy currents with pockets of stasis
- stasis ⇒
 - o platelets into contact with endothelium
 - o prevent dilution of activated clotting factors
 - ↓inflow clotting inhibitors
 - ↑endothelial cell activation
- stasis predominates:
 - o venous circ
 - o cardiac chambers eg mitral valve stenosis & AF ⇒ dilated L atrium
 - o arterial aneurysms
- turbulence:
 - o arteries
 - o direct ⇒ endothelial inj & dysfunction
- hyperviscocity syndromes or deformed rbcs ⇒ small vessel stasis ⇒ ↑risk thrombosis →eg polycythaemia or sickle cell anaemia

Blood

- Blood =
 - o 8% body weight
 - o 5.6L in 70kg man
 - o 55% of this volume = plasma

Haemopoiesis

- Pluripotential haemopoietic stem cells (PHSC) ⇒
 - o Rbcs
 - Leuckocytes
 - Platelets
- Order of organs being haemopoietically active:
 - o Primitive erythroblasts 1st cells to develop in yolk sac 2-4 weeks
 - o Liver (& spleen) become -6w 7 months
 - BM start at 6-7 months \Rightarrow 5yrs old:
 - Rbc made almost exclusively here
 - BM progressively replaced with fat in long bones until 18-20yrs
 - >20yrs confined to BM in central skeleton & prox humerous/femur

White Blood Cells

- granulocytes most numerous of Wbcs

 →differentiate into neuts, eosinophils, basophils horseshoe nuclei
- lymphocytes large round nuclei
- monocytes kidney shaped nuclei

Platelets

- megakaryocytes ⇒ platelets
- no nuclei
- 60-75% circulate; rest stay in spleen
 - \rightarrow : spleenectomy $\Rightarrow \uparrow$ serum platelet count
- half life 4d

RBCs

- lose nuclei before entering circ
- av survival 120d
- each adult man = 900g haemoglobin

Production

- proerythroblast ⇒ series smaller normoblasts over 5 days
- erythroblast progressively:
 - o contain more Hb
 - o nuclear chromatin condenses
- eventually pyknotic nucleus removed from erythroblast \Rightarrow = reticulocyte
- reticulocyte =
 - o 1st rbc to enter circulation
 - o last 1-2 days
 - o contains some RNA
 - o can synthesis Hb
 - o mature into rbc when RNA lost
- production regulated by EPO:
 - o half life 6-9hrs
 - o 90% made in kidney, 10% in liver
 - \circ ↑rate of differentiation of stem cell \Rightarrow ↑production
- final maturation of rbc requires vit B12 + folate :
 - needed for DNA synthesis
 - o deficiency = large fragile rbc with short half life
- mature rbc survive ~120 in circulation
- removed by phagocytosis in RES chiefly spleen & BM

Structure

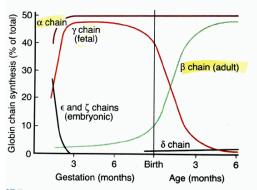
- biconcave disc 7.5um wide, 2um thick
- large surface area:volume to promote gas diffusion
- v deformable & can squeeze through microvessels
- rbc cell membrane = lipid bilayer containing:
 - o structural proteins
 - o contractile
 - o enzymes
 - o surface antigens
 - o CHO only preset on external surface
- 4 major proteins form lattice on inner side of rbc membrane impt in keeping biconcave shape

Hb Production

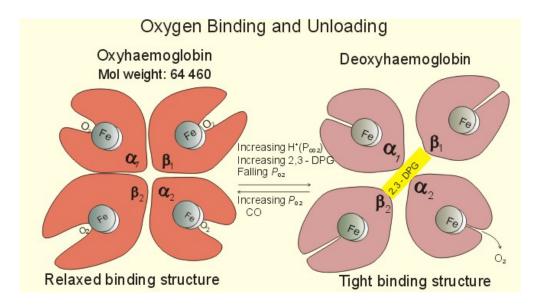
- Hb =
 - o Iron containing porphyrin (metalloprotein)

- o Mw ~65 kD
- o made of 4 polypeptide globin subunits & 4 haems:
 - Each subunit contains a heme conjugated to polypeptide (=globins)
 - \rightarrow : = 4 (2 pairs) polypeptide chains in each haemoglobin
- Haem:
 - o = iron-porphyrin compound. Norm in Fe++ (ferrous state)
 - o synthesis in mitochondria with series of reactions:
 - condensation of glycine + succinyl CoA
 - \rightarrow protoporphyrine combines + Fe++ = haem
- Globin chains = Formed in ribosomes
- ∴ Hb = tetramer of 4 globin chains, each with own haem in a hydrophobic pocket
- Binding:
 - \circ Haem \Longrightarrow O2
 - \circ Globin \Longrightarrow CO2 & H
- In normal adult blood
 - o 97.5% = Haemoglobin A $(\alpha_2\beta_2)$:
 - x1 pair α chain
 - x1 pair β chain note β production starts after birth (see HbF)
 - o 2.5% = Haemoglobin $A_2 (\alpha_2 \delta_2)$ (alpha, delta)

→also see small amounts haemoglobin A derivatives eg HbA_{1c}


 \rightarrow glucose added to terminal valine in each β

chain


- Fetal = Hb F ($\alpha 2\gamma 2$) (alpha, gamma)
 - o norm replaced by Hb A soon after birth
 - →switching related to O2 availability
 - o binds less 2,3DPG :: \uparrow affinity for O2 which allows o2 to move mum \Rightarrow fetus in placenta

L Shift OHDC DPG prefers B chains to Gamma chains \Longrightarrow L shift OHDC

- chromosome location for globin genes:
 - \circ chromosome $16 = \alpha$
 - o chromosome $11 = \beta$, γ , δ chains

JRE 32-8 Development of human hemoglobin chains.

Functions of Hb

- O2 carrier:
 - O2 loading exhibits positive cooperativity:
 - α 1 β 1 & α 2 β 2 contacts stabilise Hb molecule as O2 reacts with it
 - reaction of O2 with each subunit occurs sequentially with each facilitating the next
 - ∴ ↑ing affinity as O2 loads ⇒ sigmoid OHDC

→myoglobin only has 1 subunit thus OMDC curve = rectangular

- o O2 unloading vice versa:
 - ß chains pulled apart
 - 2,3-DPG enters molecule $\Rightarrow \downarrow$ affinity of Hb for O2
- buffering functions see renal acid base section

RBC Metabolism

- rbc lacks mitochondria
- can generate ATP via anaerobic glycolytic pathway (Embden-Meyerhof):
 - o generates:
 - 2ATP for each glucose ⇒ lactate:
 - ATP used Na/K/ATPase to keep shape, volume, flexibility
 - NADH needed by methaemoglobin reductase to reduce metHb ⇒ Hb

Synthesis & Destruction of Hb

- Hb content all in red cells
 - o man 16g/dl
 - o woman 14g/dl
- man has 900g Hb
- destroyed:
 - o 0.3g/hr
 - ~50ml/day
 - o 0.8% destroyed/day
 - ~3 million rbc/second
- glycolysis \downarrow s with \uparrow age of rbc $\Rightarrow \downarrow$ ATP $\Rightarrow \downarrow$ cellular integrity
- old rbcs destroyed by macrphagues (mainly in spleen):
 - o globin portion split off \Rightarrow amino acids \Rightarrow re-enter as pool

- o heme heme oxidase biliverdin + CO
- \circ biliverdin \Rightarrow bilirubin \Rightarrow bound to albumin \Rightarrow liver
- o in liver bilirubin conjugated with gluronic acid ⇒ excreted in bile
- o in GIT bili converted to stercobilin ⇒ some reabsorbed ⇒ excreted in urine as urobilinogen
- o iron from heme reused for Hb synthesis
- white light on skin: bilirubin ⇒ lumirubin

⊔has shorter half life

• without enough iron ⇒ ↓Hb production ⇒ iron deficiency anaemia

Iron Metabolism

- Hb contains 65-70% total body iron
- Myoglobin contains 5%
- transferrin transports iron in plasma:
 - o binds 2 atoms of ferric iron (Fe3+) / molecule
 - o gets iron from RES ie destroyed rbcs or GIT
 - o norm 30% saturated with iron
- dietary iron found in form of:
 - o haem-protein
 - o ferric protein complexs
 - o ferric hydroxide
- ~10-15mg iron/days food
- 10% of this absorbed:

→ ↑ ed in preg or iron deficiency states

- absorbed mainly in duodenum:
 - o ↑absorption = gastric acid, reducing agents (keeps iron in ferrous state)
 - o ↓absorption = alkali, chealting agents eg phsophates
- soluble iron enters mucosal cells in ferrous state ⇒ portal circulation bound to transferrin
- iron storage sites:
 - o liver
 - o spleen
 - o BM
- Stored as:
 - o 65% ferritin water soluble
 - o 35% haemosiderin insoluble
- iron losses:
 - o 0.5-1g iron lost/day in faeces from desquamated GIT epithelial cells
 - o urine, hair, sweat (small)
 - menstruation
 - o foetus in pregnancy

Haemoglobin Reactions

- Hb + O2 \Rightarrow oxyhaemoglobin
 - →attaches to the Fe2+ in the heme
- †affinity of Hb for O2:
 - o ↓temp
 - o ↓2,3-DPG
- \u2214affinity:
 - o ↑2,3-DPG

- o ↑temp
- o ↑H+

→by shifting the position of the 4 peptide chains(quaternary structure)

- methaemoglobin =
 - o drugs & oxidising agents effect blood: $Fe2+ \Rightarrow Fe3+$
 - o leads to dusky cyanosis
 - o NADH system converts methaemoglobin ⇒ Hb
- Carboxyhaemoglobin =
 - o CO and Hb
 - o CO has much higher affinity for Hb than O2 thus displaces O2

Blood Types

RBC Antigens

- 400 rbc antigens known
- inherited simple Mendelian fashion
- major antigens=
 - o ABO
 - o Rh
- Other antigens less impt:
 - Weak antigens & antibodies only develop after multiple exposures or cold temperatures (cold agglutinins (aka antibodies)
- people produced antibodies to antigens they don't have ie they express self tolerance of their own antigens. Failure of this system = haemolysis
- role of antigens is unknown

RBC Antibodies

- naturally occurring when lack corresponding antigen
- most impt = ABO
- ABO antibodies develop >3months age
- Natural antibody creation gp A & B antigens enter body via bacteria & food ⇒ antibody creation □ usually IgM, reactive at 37deg C but optimal reactivity at 4deg
- Immune antibody creation occurs:
 - Trans-placental passage of antigens only IgG can get across. Most impt = Rh antibody (antiD)
 - o Transfusion
 - \rightarrow IgG = react optimally at 37deg

ABO System

• Antigen – on rbc cell

→also found in plasma, saliva, gastric juice, tears, bile (not CSF)

→unlike Rh which only on rbcs

- Antibodies in blood serum
- Transfusion of packed red cells = transfusion of cells **not** serum
- ABO system named after antigens on rbc cell
- Varieties & frequency (Caucasian) of blood types named after antigens
 - o A = A antigen; anti B antibody (45%) \Rightarrow give A or O
 - o B = B antigen; anti A antibody (10%) \Rightarrow give B or O
 - AB = A & B antigen; no antibody (4%) ⇒ give anything
 - O = have no antigens; anti A & B antibodies $(43\%) \Rightarrow$ give O only
 - →thus O = universal donor; AB = universal recipient
- Antigens in intestinal bacteria & food very similar to agglutinins
 - → : soon develop antibodies to antigens not already in their own blood

Transfusion Reactions

• Plasma in donor transfusion of packed red cells is extremely diluted once placed inside recipient

∴ thus any antibodies don't significantly activate onto against host rbcs antigens

→but if recipients plasma has antibodies against donor rbcs ⇒ agglutinante & haemolyse ⇒ free Hb into plasma

- Transfusion reaction vary
 - o minor ↑ bilirubin
 - o severe jaundice
 - o renal tubular damage \Rightarrow anuria \Rightarrow death

Inheritance ABO System

- autosomal dominant inheritance:
 - o phenotype B: genotype BO or BB
- thus both parents B can have children:
 - o BB
 - o BO
 - \circ OO

→can use this to say a child is not a fathers, but not to prove he is

Other Antibodies

• Exist many other rbc antibodies eg Rh, Duffy etc

Rh System

- Named after rhesus monkey
- C, D, E antigens only on rbcs
- D is the most antigenic and most common ~85%
- Rh antibodies =
 - o Rarely occur naturally:
 - anti C & anti E

⊔but no natural anti D exists

- Usually
 - Immune created,
 - Warm
 - IgG in origin ie can cross placenta (actively)
- Problem when Rh–ve mother exposed to fetal Rh +ve blood in 1st pregnancy:
 - Needs D antibody (antiD) <72hrs to mop up/destroy Rh D+ antigens which could have corssed placenta/entered maternal circulation
 - ⇒ this prevents formation of maternal antiD IgG which would cause haemolysis of next pregnancys Rh+fetus (erythroblastosis fetalis)

→haemolysis ⇒ death in utero, kernicterus, anaemia, jaundice, hyrdops fetails (oedema)

→bilirubin depositied in basal ganglia

- 85% whites = Rh +ve
- 99% Asians Rh +ve

Other Blood Groups

- clinically less impt
- P, Lewis, MN systems:
 - o Naturally occurring antibodies only react at low temps
 - Antigens low antigenicity
- Kell system:
 - o 3rd most impt after ABO, Rh
 - o k antigen:

- present on rbcs, WBCs, platelets
- is immunogenic but low frequency : only impt if multiple transfusions

Anaemia

- Anaemia is deemed as a reduction in red cell mass below the normal range.
- The normal range varies with age, sex, environment and pregnancy

Physiological consequences of acute and chronic anaemia.

- Acute blood loss ⇒
 - o rapid fluid shift from the interstitial compartment to the intravascular compartment.
 - → usually supplemented by IV fluid.
 - $\circ \Rightarrow$ rapid fall in red cell count due to dilution. Effects of this:

 - \underset oxygen carrying capacity of blood:
 - Oxygen carrying capacity = $([Hb] \times SaO2 \times 1.34) + 0.003 \times PaO2$,
 - \hookrightarrow oxygen flux = Delivery is carrying capacity x cardiac output
 - : fall in Hb from 150 g/l to 100 g/l results in a fall in oxygen carrying capacity from 20 ml/100 ml to 14 ml/100 ml.
 - If metabolic rate is unchanged, this requires a
 - o lower mixed venous PO2 ie ↑O2 extraction and
 - o increased cardiac output to maintain oxygen flux.
 - →Both of these changes occur the rise in CO facilitated by \viscosity
 - ↑ production of 2,3DPG \Rightarrow R shift OHDC (↑O2 unloading)
 - o ↑RR: some increase in PAO2.
 - o ↑rbc production:
 - Within hours of acute blood loss
 - stim by the impairment of tissue oxygenation $\Rightarrow \uparrow$ erythropoietin.
 - ↑reticulocyte count to 10-15% over a week
 - o †platelet and WCC occur as they are mobilized from marginal sites.
- chronic anaemia depend partly on the cause of the anaemia.
 - Reduction in oxygen carrying capacity is always present and results in the same physiological responses as acute anaemia:
 - o increased ventilation,
 - o ↑CO.
 - o ↑2,3DPG
 - ↓mixed venous PO2.
 - o haematological changes depend on the cause of the anaemia

Classification

- chronicity
 - o acute
 - o chronic
- MCV
- Cause:
 - o Blood loss

- o Haemolytic anaemias
- o Anaemia of ↓ed erythropoesis

Chronicity

- Acute:
 - o Haemorrhage
 - Haemolysis
- Chronic:
 - o Everything else

MCV

• can be classified under MCV terms

Red Cell Appearance Indices	Small cells (microcytic) Low MCV <80	Normal Cells (normocytic) Norm MCV	Large Cells (macrocytic) High MCV >9	6
Bone			Megaloblastic	Normoblastic
Marrow				
Diagnosis	 Iron deficiency 	 Acute blood loss 	• Vit B12	 Alcohol
	↓Diet	 Renal failure 	def.	 Liver disease
	 malabsorption 	 Marrow failure 	 Folate 	 Reticulocytosis
	bleeding	 Haemolytic anaemias 	deficiency	 Hypothyroid
	growth/pregnancy	• Endocrine disease:		
	 Thalassaemia 	 Hypothyroid 		

Hypoadrenal

hypopituitary

Cause

- Blood loss:
 - o Acute
 - \circ Chronic blood loss \Rightarrow
 - iron reserves depleted or

Sideroblastic disease

Anaemia of chronic disease

- rate of loss > rate of replenishment
- haemolytic anaemias:
 - o intrinsic abnormalities of rbcs:
 - hereditary: eg
 - · disorders of membrane cytoskeleton
 - enzyme deficiencies: eg
 - o hexokinase deficiency
 - o G6PD deficiency
 - Disorder Hb synthesis:
 - o Thalassaemia
 - o Sickle cell anaemia
 - Acquired:
 - Membrane defect eg paroxysmal nocturnal haemoglobinuria
 - o Extrinsic abnormalities
 - Antibody mediated:
 - Isohaemagglutinins eg transfusion reactions
 - Autoantibodies:

- o Idiopathic
- o Drug
- o SLE
- Mechanical trauma to rbcs:
 - Microangiopathic:
 - o TTP
 - o DIC
 - Cardiac traumatic haemolytic anaemia
- Infections eg malaria
- Chemical injury eg lead poisoning
- Sequestration in phagocyte system eg hypersplenism
- \rbc production:
 - o disturbance of stem cells:
 - aplastic anaemia
 - anaemia of renal failure
 - endocrine disorders
 - o disturbance of erythroblasts:
 - ↓B12/folic acid
 - iron deficiency
 - thalassaemia
- unknown or many mechanisms:
 - o sideroblastic
 - o anaemia chronic infections

Hereditary Spherocytosis

- autosomal dominant
- deficiency in spectrin & ankyrin meshwork protein on inner rbc cell membrane
- rbcs ⇒ more spheroidal, less deformable ⇒ splenic sequestration
- infections can trigger:
 - o haemolytic crisis
 - o aplastic crisis
- >50% develop gallstones from chronic †bili

G6PD Deficiency

- G6PD produces glutathione & NADPH as part of hexose monophosphate shunt
- Glutathione protects rbcs from oxidative injury
- Oxidant stresses ⇒ Hb denaturation in form of :
 - Heinz bodies
 - \circ \downarrow deformability \Rightarrow splenic sequestration
- X linked disorder
- 10% American blacks less severe. Susceptible to oxidant drugs eg anti-malarials
- Mediterranean form
 - o G6PD levels v low ∴ haemolytic episodes more severe
 - Ingestion fava beans/legumes = oxidants

Sickle Cell Disease

- Sickle Cell Anaemia = mutant chains:
 - ο Hb S ($\alpha_2 \beta_2^s$)= mutant β chain (one glutamic acid replaced by a valine)
 - o 8% American blacks heterozygous for HbS

- o HbS polymerises into long stiff chains at low o2 tensions(deoxygenated) ⇒
 - Rbc changes from biconcave disc to crescent shape
 - ↑fragility ⇒ thrombus & aggregation of rbcs
 - benefit is protection against malaria
 - common in Africa, Arabia, India
- o determinants of severity of sickling=
 - amount of HbS in rbc
 - interaction with other Hb chains in rbc
 - mean corpuscular Hb concentration (MCHC):
 - → ie chance of HbS interacting with other HbS & aggregating
 - \uparrow dehydration $\Rightarrow \uparrow$ MCHC
 - thalassaemia $\Rightarrow \downarrow MCHC$
 - capillary transit times = proportional to amount of O2 extraction
 - sluggush $\Rightarrow \uparrow O2$ extraction $\Rightarrow \uparrow$ deoxygenation \Rightarrow sickling
- o heterozygotes:
 - 40% HbS; rest HbA
 - HbA reacts poorly with HbS ⇒ resisting aggregation
 - HbF reacts even less with HbA : delayed presentation of sickle cell until >6months
- o Consequences:
 - R shift of OHDC
 - Chronic haemolysis rbc life span shorterned to ~20d
 - Microvascular occulsions ⇒ hypoxia & infarction

Thalassaemia

- Thalassaemia = normal structure of chains but different or absent amounts
- = imbalance between $\alpha \& \beta$ chains of haemoglobin:
 - \circ α thalassaemia =
 - deficiency α synthesis
 - due to deletion α globin genes
 - \Rightarrow excess non-α globins:
 - free ß chains unstable & damage cell membranes
 - free gamma chains = stable but bind O2 very avidly ⇒ tissue hypoxia
 - classification:
 - silent carrier = barely detectable $\downarrow \alpha$ chains
 - trait
 - HbH disease = deletion of 3 α globin geners \Rightarrow unstable tetramers of β globin
 - Hydrops fetalis = all 4 α globins deleted \Rightarrow free gamma chains \Rightarrow in-utero death
 - o ß thalassaemia =
 - deficiency ß synthesis
 - total absence or \ed but detectable β globin synthesis
 - caused by point mutations affecting transcription or translation
 - \Rightarrow excess α chains form aggregates which damage cell membrane causing:
 - ineffective erythropoiesis
 - haemolysis
 - features:
 - skeletal abnormalities overactive marrow
 - iron overload from over absorption & repeated transfusions

- clinically divided based on severity of anaemia (genetic defect & whether homozygous or heterozygous) into:
 - minor symptomless carrier state
 - intermedia rarely requires transfusions
 - major regular transfusions req'd otherwise quick death
- thalassaemia Rx's:
 - o long term folic acid supplements
 - blood transfusions
 - o splenectomy with vaccinations & long term proph. Antibiotics
 - o Stem cell transplant

Paroxysmal Nocturnal haemoglobinuria

- Chronic intravascular haemolysis
- Only acquired haemolytic anaemia
- Rbc's have \(\gamma\) susceptibility to complement mediated lysis
- Due to X linked mutation

Immune Haemolytic Anaemias

- Due to anti red cell antibodies
- Classification occurs based on Coombs test detects
 - o Serum antibodies
 - Complement on rbcs
- Types:
 - o Warm antibody haemolytic IgG
 - Primary = Idiopathic
 - Secondary =
 - SLE
 - Lymphomas
 - Hodgkins
 - Carcinomas
 - o Cold agglutinin (antibody) immue haemolytic anaemia IgM
 - Primary = idiopathic
 - Secondary:
 - Infections eg infectious mononucleosis
 - lymphomas
 - o Cold haemolysis haemolytic IgG

Methaemoglobin

- =small portion of Fe irons in Hb exist in Fe+++ state (ferric)
- unable to carry O2
- causes:
 - o congenital deficiency of enzyme converting ferric ions to ferrous state
 - o drugs eg SNP, prilocaine
- = a functional anaemia

Sulfhaemoglobin

• also unable to carry O2

(Myoglobin)

- haem containing O2 binding protein present in skeletal mm
- has a role as O2 store
- Contains a single globin chain

- Dissociation curve has a rectangular hyperbola shape
- Curve lies very L of Hb ie much higher affinity for O2
 - 4 allows optimal loading/unloading of O2 at PO2 levels which occur in muscle

Marrow Failure

- = aplastic anaemia
- idiopathic in 65% cases
- there are leukaemic, cancerous or other abnormal cells in blood or bone marrow
- can be:
 - o acquired more common
 - o inherited uncommon
- occurs due to reduction in stem cell numbers : all cell lines

Clinical Features

- anaemia
- bleeding minimal trauma, blood blisters in mouth
- infection mouth infections

Vitamin B12 Deficiency

- diminished erythropoesis
- B12 & folate needed for production of thymidine ⇒ building block of DNA
- Anaemia 2nd to
 - ↓production
 - o abnormal rbcs \Rightarrow premature removal by phagocytes
- Causes:
 - o Pernicious anaemia most common
 - Pancreatitis
 - o Coeliac /crohns disease
 - o metformin

Uncommon, and mild B12

Complications

• unRx'ed can ⇒ marrow failure ie pancytopaenia

Pernicious Anaemia

• = autoimmune attack of gastric mucosa ⇒ ↓intrinsic factor secretion⇒vit B12 malabsoption

Pathogenesis

- more common in females
- assoc with AID:
 - o thyroid 33% correlation
 - o addison's
 - o vitiligo
- parietal & chief cells of stomach are replaced by mucin secreting cells

Clinical Features

- Insidious gradual onset
- Polyneuropathy: demyelination of spinal cord trates ⇒ spastic paresis & sensory ataxia
 - ightharpoonup no neuro symptoms with folate deficiency
 - o Symetrical parathesiae in fingers, toes
 - o Loss vibration sense, proprioception
 - Progressive weakness

o ataxia

Investigations

- blood film
- bone marrow
- serum bilirubin raised due to ineffective erythropoesis
- serum B12
- vit B12 absorption test (schilling):
 - o IM injection overnight of B12
 - o Take radiolabelled B12 with intrinsic factor & without
 - Look for labelled B12 in urine
 - o +ve for PA if ↑B12 in urine WITH intrinsic factor

 $\rightarrow = IM$

Treatment

- intramuscular B12
 - o x6 over 1st 2wks
 - o then 3monthly for life
- oral B12 supplements

Folate Deficiency

found in green vegetables eg spinach, broccoli or liver & kidney

Causes

- nutritional:
 - o poor intake
 - o alcohol excess
 - o anorexia
- antifolate drugs eg methotrexate, phenytoin, trimethoprim
- excess utilization:
 - o physiological eg pregnancy, lactation
 - o pathologcial:
 - haematological disease eg excess rbc destruction
 - malignancy
 - inflam disease
 - o malabsorption

Clin Features

• same as B12 but do not get gastric atrophy or neurological changes

Treatment

5mg folic acid daily

Iron Deficiency

Causes		IDA	Anaemia of
Diet Intake		IDA	Chronic Disease
 rare cause in Western diet 			Chi onic Disease
Tale cause iii western uiet	Ferritin	1	↑ or norm
 Major sources = Cereals & meats 	Iron	Ĭ	i
Malabsorption	TIBC	*	1
Small bowel resection esp duodenum & jejunum	TIDE	I	₩

Blood Loss/†demand

• Pregnancy/infancy

[→]should ↑Hb and ↓LDH

- Most commonly from GI, uterine bleeding
- Abroad: hookworm infestation of GI tract ⇒ blood loss

Clinical Features

- Signs of iron deficient anaemia:
 - o Brittle nails
 - Spoon shaped nails (koilonychia)
 - Smooth Atrophic tongue
 - o Angular stomatitis
 - o Brittle hair
 - o Syndrome dysphagia & glossitis (Plummer-Vinson syndrome)
- Symptoms from history:
 - ↓dietary intake
 - o self medication with NSAIDS \Rightarrow GI bleeding
 - o blood in faeces from Ca lower bowel/haemorrhoids
 - o duration of periods in women Norm. = 3-5 towels/tampons per day

Investigations

- FBC & ferritin & tibe
- Blood film
- Iron Studies electrophoresis of Hb
- Bone Marrow studies

Classification of Haemoglobinopathies

- Classification
 - Structural hemoglobinopathies
 - Sickle cell anaemias
 - Hb C and M
 - Low and high O2 afinity Hb
 - o Thalassaemias
 - Alpha thalassaemia variants
 - Beta thalassemia variants
 - o Combined structural/thalaessemias
 - o Hereditary persistance of fetal Hb (HPFH)
 - Aquired Haemoglobinopathies
 - Methemoglobinemia
 - Leukaemia induced disorders of Hb

Assessment of Coagulation, Platelet Function & Fibrinolysis

Bleeding Time

- Functional test of clotting
- Standardised cut made on the skin & time of bleeding measured
- Difficult to calibrate
- Good test of platelets primary haemostasis usually reaction stopping the bleeding

 →but if time is prolonged doe not indicate nature of clotting defect

Platelet Count

- Good predictive value of risk of bleeding
- Platelets need to known to have norm function
- Results:
 - \circ <50x10⁹ = assoc prolonged bleeding
 - \circ <20 x10⁹ = assoc spont dangerous haemorrhages

Prothrombin Time or INR

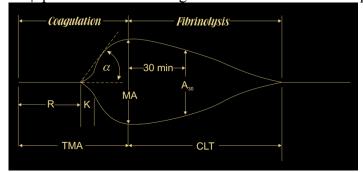
- Assesses extrinsic & common pathways
- Method:
 - o Specimen of plasma at 37deg is citrated to bind any ionized Ca
 - Start of test = Tissue factor & Ca added
 - Time taken to coagulate = result
- Normal range 0.9-1.2
- Prolonged if:
 - o Warfarin
 - Vit K deficiency
 - Liver disease
- Most commonly used to assess coumarin anticoagulants ie 7, 9, 10, prothrombin

Activated partial Thromboplastin Time (APTT)

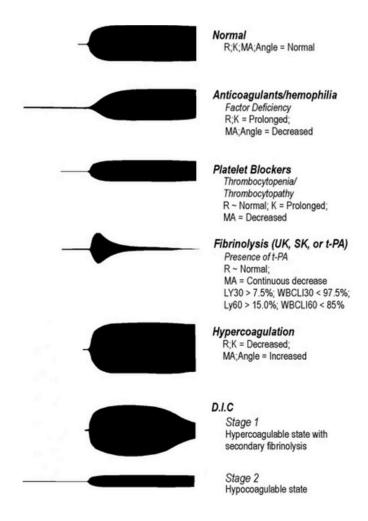
- Ax intrinsic & common pathways
- Method:
 - o Citrated plasma at 37deg combined with kaolin & cephalin
 - Excess of Ca added ⇒ time to coag measured
- Screens for adequancy of factors 9, 11, 12, PK, HMWK
- Used to adjust heparin dose
- Norm 35-45 sec
- Prolonged in:
 - o Heparin
 - o Haemophilia

Thrombin Time

- Assesses common pathway ie fibrinogen ⇒ fibrin
- Method:
 - o Thrombin added to plasma


- Time to coagulate measured
 →ie Ca not required
- Normal range 10-15 sec
- Prolonged in
 - Heparin Rx
 - o DIC
 - o Afibrinogenaemia
 - Excessive dabigitran

Activated Clotting Time


- Automated device used to assess for supratherapeutic heparinisation
- different brands used which have diff norm values ie 80-160 secs
 - o ACT >400sec used for bypass
- Norm value = no heparin effect
- only relevant to UFH
- measures intrinsic pathway
- linear response to \ACT with \heparin
- works by adding factors to blood to activate clotting eg kaolin or glass beads
- false long reading seen in lupus anticoagulation

Thromboelastogram (TEG)

- sample of blood placed in a cup which is then gently rotated x6/min to simulate sluggish venous flow
- thin wire probe in middle used to measure degree of coagulation
- clot forms around wire
- ↑speed of onset & strength of clot measured and displayed in different ways

- main variables determined:
 - R time = long ~ \uparrow time to evidence of first clot \Rightarrow give FFP
 - K value = $long \sim \downarrow speed of clot formation \Rightarrow give cryo$
 - o α angle = \downarrow 'ed angle $\sim \downarrow$ speed of clot formation \Rightarrow give cryo
 - MA (max amplitude) = \downarrow ed size $\sim \downarrow$ clot strength \Rightarrow give platelets
 - A30 (amplitude at 30min) = \downarrow 'ed size ~ too much fibrinolysis \Rightarrow give TXA

Deficiencies of Above Tests

- None will assess function:
 - o Factor 13
 - o Alpha2 antiplasmin deficiency
 - o vWF deficiency
- ∴ always risk of excessive bleeding
- is a functional reserve in concentration of clotting factors:
 - o haemophilia A = no symptoms until factor 8 level <5%
- to determine specific cause for defective clotting need to do
 - o specific factor assays
 - o tests for anti-factor antibodies

Fibrinolytic System

- Assessed using clot lysis time
 - is shortened in alpha2 antiplasmin deficiency
- Circulating fibrin degredation products can be assayed ⇒ some info about clot lysis
- Fibrin crosslinking can be assessed by clot solubility in 5M urea
 - → ↑ed time in factor 13 deficiency

Plasma Proteins

- proteins=
 - o albumin
 - o globulin
 - o fibrinogen
 - o caeroplasmin
 - o CRP
 - o transferrin
- function:
 - o P roteolytic (complement, coagulations, fibrinolysis)
 - o R ole in acid base (buffering) ~15% of total
 - o O ncotic pressure ~25mmHg
 - T ransport
 - o E nzyme systems (α1 antitrypsin)
 - o I mmunological
 - o M etabolic (store of amino acids/energy source)

Origin

- antibodies from lymphocytes
- other proteins mostly from liver
- albumin:
 - o approx 40% intravascular
 - o rest mostly in skin
 - o 5-10% degraded every day; replaced hepatic synthesis 200-400mg/kg/day

→carefully regulated

- o transported to extravascular stores by capillary vesicular transport mechanisms
- o makes up 80% of oncotic pressure
- o primary transporter of many substances:
 - bili, Ca, hormones (T3 & T4)
 - CO2 as carbamino compounds
 - drugs 2 main binding sites BZ & warf sites
- Globins:
 - \circ $\alpha 1$ -
 - acid glycoprotein (αag)–
 - · acute phase reactant
 - carrier for most basic drugs
 - low capacity/low conc system
 - o α2 eg haptoglobin scavenges globins from Hb
 - β eg haemopexin scavenges free haem
 - o γ Igs from B/plasma cells
- Others
 - o coag factors
 - o CRP
 - o complement
 - cytokines

Hypoproteinaemia

- stores used up before hypoproteinaemia occurs
- causes:
 - o prolonged starvation
 - malabsorption syndromes
 - o liver disease
 - o nephrosis
 - o afibrinogenemia congen poor blood clotting

Blood Products & transfusion Medicine

- transfusion involves safe & compatible blood/products from donor to recipient
- compatibility between donor rbc antigens & recipient plasma antibodies is vital to prevent haemolytic reactions

Donors

- criteria for donor:
 - o voluntary, healthy, unpaid
 - <13% volume to be taken
 - o 18-60 or 70 (if regular)
 - Hb >135g male, 125g female
- Self deferral eg Hx HIV/HBV/HCV, malaria, fever, foreign travel, body piercing, tattoos
- Blood testing:
 - o HBV-
 - HBsAg low infective carrier
 - antiHBc = evidence of past infection
 - o HCV anti HCV
 - o HIV, anti HIV1+2, p24 antigen
 - o Treponema also serves as marker for other STDs
 - o HTLV 1+2 antibodies
 - o CMV antibodies

Blood Grouping (ABO & Rh)

- Testing of ABO & Rh(D) on donor & recipient
- testee rbc suspended in saline ie no serum
- serum with known antibodies added to test solution
- watch for agglutination : work out grouping
- this done with
 - o IgM solutions (ABO)
 - o IgG solution (rhesus)
- serum containing IgM antibodies anti A, anti-B, anti-AB
- serum with known gp A, B, O rbcs (reverse grouping)
- anti serum containing an IgG potent enough agglutinate Rh(D) +ve cells in saline

→weak agglutination due to D variants may be missed

Blood Screening

- testing of recipient +/- donor blood
- testee serum taken; rbc which are group matched BUT with known minor antibodies (Kell/Duffy) are added.
 - → Agglutination proves presence of minor antibodies

Coombs Test

- done to test for unexpected IgG weak antibodies
- done as indirect test
 - o testee serum added to Coombs rbc's this binds IgG onto rbc
 - o Coombs rbc's with antibodies bound are washed away from testee serum

- Coombs reagent added to cells which contains anti-human antibodies which bind to IgG on rbc ⇒ agglutination = positive Coombs test
- control sample also done to check activity of Coombs reagent
- does not add much safety to group & screen see next

Cross Match

- involves:
 - o group testing saline agglutination test (as above)
 - screen as above
 - o Coombs Test
- rarely done in ANZ as only adds 0.01% extra of safety on top of group and screen

Prior to Administration of Blood Products

- donor:
 - o self deferral
 - disease testing
 - o group & screen
- recipient:
 - o group and screen

Safety of Blood Transfusion & Degree of Compatibility testing Extent tested: Relative safet

Extent tested: Relative safety:ABO-compatible 99.4%

ABO + Rh compatible
 ABO + Rh + neg antibody screen aka group & screen
 ABO + Rh + neg ab screen + Coombs' test ("full X-match")
 99.8% (1:1000 react)
 99.94% (1:10 000)
 99.95% (1:500 000)

• ∴, Coombs' test adds very little xtra and is usually omitted in routine testing.

Blood Products

Whole Blood

- ~400-500ml blood taken
- 63ml anticoagulant added:
 - o citrate-phosphate-dextrose (CPD)
 - o CPD-adenine
 - o SAG-M or ADSOL: saline, adenine, glucose + mannitol
 - → dilutes plasma by ~20%
- Additives:
 - o Citrate: combines with & neutralises Ca ∴ anticoagulates blood
 - o Phosphate: added as buffer + source of phosphate for metabolism
 - o Adenine: provides substrate for ATP synthesis ∴ prolongs shelf life to ~35ds
 - o Dextrose: for rbc metabolism glycolysis (rbc has no mitochondria)
- Blood stored at 4-6deg C
 - →low temp inhibits metabolism & inhibits bacterial growth
- Properties of whole blood depend on
 - o anticoag added

- o duration of storage
- get in massive transfusion protocols contains all clotting factors

Packed Red Cells

- obtained by centrifugation or sedimentation of 1 unit of while blood
- ~200-250mls plasma removed
- has HCT >0.75

RBC Substitutes

- stroma free Hb=
 - o special Hb characteristics:
 - cross linked,
 - surface conjugated
 - polymerized
 - encapsulated
 - $\circ \Rightarrow \uparrow \text{half life & } \downarrow \text{nephrotoxicity}$
 - o problems:
 - ↑oncotic pressure
 - half life 6hrs
- perflurocarbon emulsions:
 - o advantages:
 - long shelf life
 - stored at room temp
 - subjecedt to viral inactivation
 - universal biocompatibility
 - religious acceptance
 - o problems:
 - half life 24-28hrs
 - require Fio2 100%
 - can interfere with many lab tests
- applications of substitutes:
 - o trauma/military
 - o surgery +/- acute normovolaemic haemodilution

Platelets

- available as:
 - o standard unit = from single donor or pooled from 4-6 units blood
 - o adult dose = apheresed from single donor = 5-6std units
- special storage conditions = extend shelf life to ~5days
 - o temp 20-26deg usually 22deg
 - o special packs made from polyolefin plastic = allows aeration
 - o constant agitation needed
- 1 std unit contains $\sim 6 \times 10^{10}$ platelets : 1 std unit transfused $\Rightarrow \uparrow$ plt count by $\sim 10 \times 10^9$ /L per m2 body s.a.
- risks:
 - o plts express HLA class 1 antigen
 - o contamination by wee & rbes can cause allo-immunisation esp with repeated transfusions
 - \rightarrow refractoriness to subsequent platelet transfusions
 - : ABO & Rh compatible plts are usually used

- HLA matched plts used for plts with HLA antibodies
- All is less of an issue with leucodepleted irradiated blood
- Disease transmission sepsis quoted 1:12,000
- 1/3 of transfused plts are sequestered in spleen

ASA Recommendations on Plt transfusion

- ↑consumption ie ITP = prophylactic platelet transfusion rarely effective
- surgery =
 - o <50 give platelets if high risk surgery
 - o 50-100 = determine risk eg aspirin, renal disease, type of surgery
 - \circ >100 = Rarely needed if >100
- if low risk surgery of norm vaginal delivery can consider even if platelets <50
- consider platelet t/f if known platelet dysfunction or risks of despite platelet count:
 - o CPB
 - o Renal failure
 - o uraemia

FFP

- Prepared from fresh blood ⇒ frozen rapidly to -30deg (must be frozen <8hrs post collection)
- Collected from single donor via separation or apheresis
- Undergoes viral inactivation = UV light/methylene blue/pasteurization/solvent)
- Lasts 1yr
- Contains:
 - o Factors (labile 5&8) and
 - o Stabile factors (1,2,7,9,10,11,12, AT3, protein C+S)
 - o Plasma lipids
- 1 unit FFP \Rightarrow †all coag factors by 2-3%
- indications:
 - o reversal of warf 5-8ml/kg
 - o Antithrombin 3 deficiency with heparin Rx
 - o TTP & HUS
 - Rx of immunodeficiencies
 - Massive blood transfusions

Cryoprecipitate

- Made from freshly separated plasma by
 - o freezing at -70degs
 - o rapid thawing at 4degs
- stored at -30deg, shelf life 1yr
- contains rich amounts:
 - \circ f8 = 80unuts
 - o fibrinogen 250mg
 - o fibronectin
 - o vWF
 - o F13
- 1unit $\Rightarrow \uparrow$ fibringen by 0.5g/l
- indications:
 - o vWF unresponsive to DDAVP
 - o congen fibrinogen deficiencies rare
 - o DIC

Factor VIIa

- Mode of action:
 - Activated factor 7 effectively bypasses steps coagulation steps needed f8 & f9 by upregulating extrinsic pathway in conjunction with tissue factor
 - → now thought unlikely mechanism
 - o Haemostatic function by platelets activation
- Is a vit K dependant factor
- Indications:
 - Severe refractory bleeding (unlicensed & controversial)
 - Haemophilia A or B not responding to specific factor administration 2nd to antibody creation/inhibitors
 - o Congen factor 7 deficiency
- Risks:
 - Arterial thrombosis
- 50-90mcg/kg

Changes during Blood Storage

- platelets:
 - o non functional within 48hrs if stored at 4deg
 - platelets in massive transfusion more impt than coag factor deficiency (dilutional thrombocytopaenia)
- WCC:
 - o Granulocytes lose phagocytic + bactericidal properties within 4-6hrs post collection
 - o Antigenic properties remain
- Rbcs:
 - o \uparrow spherical with time $\Rightarrow \uparrow$ fragility $\Rightarrow \uparrow$ ed chance haemoylsis $\Rightarrow \uparrow$ free Hb
 - o if rbc's transfused at max recommended storage time (35d) = 10-20% destroyed ≤24hrs
- ↓2,3DPG (&↓ATP):
 - o in CPD-A blood:
 - @14days = 50% 2,3DPG
 - @28days =5% 2,3DPG, ATP 75%
- microaggregate formation:
 - o made by platelets + leucocytes (10-40um)
 - o can cause pulmon dysfunction
 - o microfilters does not help
- coagulation factors:
 - \circ f5 & f8 = labile factors:
 - f5 @ 14d = 50%
 - f8 @ 24hrs = 50%, @ 21d = 6%
 - o f8 should be produced endogenously anyway with stresses (if not haemophiliac)
 - o levels of other factors not ↓ed up to 21days
 - o use of packed cells ie less plasma will ⇒ factor dilution
- biochemical:
 - o ↑serum K:
 - @7days K 12mmol/L
 - 30days = 30mmol
 - → not a problem after transfusion as
 - restoration of rbc metabolism \Rightarrow reuptake of K into rbc
 - catecholamines \Rightarrow K uptake

- dilutional effect via distribution through ECF
- slow transfusion ⇒ time for above processes
- o ↑rbc intracellular sodium
- o ↓pH 6.7 @28days
- o ↓calcium

Complications of Transfusion

- ~3% react to blood
- fatal reaction = rare : 1 : 50,000 transfusions

Classification:

- by type
- by time

By Type

- disease transmission
- transfusion rractions
- metabolic/electrolyte abnormalities
- microaggregates
- immunomodulation
- transfusion related acute lung injury (TRALI)
- other

1. Disease Transmission

- HCV:
 - o Anti HCV antibodies
 - Nucleic acid amplification test (NAT):
 - Has ↓ed window period for missing diagnosis of
 - HIV $(22d \Rightarrow 10d)$
 - HCV $(70d \Rightarrow 10d)$
 - o Risk 1:250,000/unit ANZ
 - o Responsible fr 90% transfusion hepatitis
 - Needlestick 1.8% risk of getting HCV
- HBV:
 - o Tests:
 - Hbs-Ag
 - Anti-HBV antibodies
 - \circ Risk = 1:400,000/unit
 - o Responsible for ~10% transfusion hepatitis
 - Needlestick ~30% risk!!
- HIV:
 - o Tests:
 - Anti-HIV 1+2 antibodies
 - P-24 ag
 - NAT
 - o Risk 1:1,000,000/unit (aus) no known transmission in NZ
 - o Needlestick ∼1%
- CMV:
 - Most common viral transmitted disease via blood transfusion

- Usually fairly innocuous for most people
- o Only selected units tested then kept for neonates, immunosuppressed
 - ⊔anti-CMV antibodies
- o Risk <1%/unit
- Bacterial contamination:
 - o Esp:
 - Gram +ves
 - Yersinia
 - Pseudomonas
 - o Far more common than risk of viral transmission
 - o Risk 1:50 66,000
- Other:
 - o HTLV 1+2, malaria, NVCJD

2. Transfusion reactions

- Allergic:
 - o ?against incompatible plasma proteins
 - o mild = common
 - rash/pruritis/fever
 - slow infusion rate
 - o moderate:
 - stop, antihistamine
 - use washed rbcs/platelets for subsequent transfusions
 - o severe:
 - anaphylaxis
 - Due to infusion of IgA to IgA deficient pt who has anti-IgA antibodies (1:700)
 - use washed rbcs/platelets in future
 - o less common with leucodepletion
- febrile reactions:
 - o (non-haemolytic type)
 - o usually occurs <4hrs
 - o caused by
 - recipient antibodies against donor leucocytes
 - induced by cytokines in donor rbc or platelets
 - o unusual fever >38, headache, N&V, rigor, CP
 - o mild: slow rate, antipyrexic, tramadol for shivers
 - o severe: stop. Future transfusions:
 - buffy coat rbcs
 - leucodepleted
 - HLA compatible platelets
 - o (multips get more severe reactions than primips)
 - o less common with leucodepletion
- Haemolytic reactions:
 - o 2nd to ABO/Rh incompatibility
 - o 50% caused by clinical error
 - o 1:250,000 1million
 - o symptoms:
 - initial: fever/rigor. Restlessness, chest pain, \bp
 - →NB fever & rash more likely to be allergic reaction (not ABO)
 - later: haemolysis of bloods (anaemia, ↑unconjugated bili, ↓haptoglobin), renal failure from stromal & lipid contents precipitating in kidney

- \circ Rx:
 - stop stat. send donor & recipient sample to lab for repeat typing
 - maintain UO IVF, furosemide, mannitol
 - optimise DO2
- delayed haemolytic reactions:
 - \circ 1:1000 \Rightarrow 1:250 000
 - o 2nd to antibodies against minor donor rbc antigens
 - o usually 10-14days post
 - o supportive Rx

3. Metabolic/Electrolyte Reactions (~storage lesion)

- ↓pH:
 - o due to:
 - lactic acid production from rbcs
 - citrate
 - o pH blood 6.9-7 @21days
 - o but uncommon & usually only in massive transfusions
 - o more common is slight met alkalosis: citrate metabolised to HCO3
- ↓2,3DPG:
 - $\circ \Rightarrow L \text{ shift OHDC}$
 - o usually not impt
- ↑K:
 - o blood @21days = 30mmol/L
 - o usually not an issue
 - o give Ca if needed
- ↓Ca:
 - o citrate toxicity
 - o not problem unless >1unit/5min
 - o risk factors:
 - liver dysfunction
 - hypothermia
 - hyperventilation
- ↓Mg

4. microaggregates

- clumping of plts & WBCs in storage (10-40um) \Rightarrow pulmonary dysfunction
- no fix

5. Immunomodulation

- caused by sensitisation to donor wbc's
- causes:
 - ↑incidence bacterial infections
 - recurrence of some cancers
 - o (but good post organ transplants)
- leucodepletion may \immunomodulation

6. TRALI

- non cardiogenic pulmon oedema similar to ARDS
- = SOB, hypoxia, ↓bp, fever
- causes:
 - o HLA antigens cause severe acute microvascular injury
 - o High antigen titre in donor plasma reacts with recipients neutrophils

→ already localised in pulmon vasculature

- develops <2-4hrs \Rightarrow resolve 4days
- 90% recovery
- much less common 2nd to leucodepletion

7. Other

- volume overload
- DIC/ARDS
- Religious issues
- Graft vs Host:
 - o Live transfused lymphcotyes engraft in host ⇒ immune response against host cells
 - Rash, \downarrow ECC, \downarrow plts \Rightarrow sepsis, death
 - o impt in:
 - immunocompromised
 - prem babies
- lecuodepletion not that helpful but gamma irradiation is must do if to high risk pt
- 90% mortality

By Time

Early (<24hr)

- include:
- o acute haemolytic reactions eg ABO or rhesus incompatibility
- o bacterial contamination:
- o febrile (non haemolytic) reactions from HLA antibodies
- o allergic reaction:
- Anapylaxis
- o fluid overload:
- o transfusion related lung injury (TRALI) –

Late (>24hrs)

- include:
- o delayed haemolytic –
- o infections (viruses hep B/C, HIV, bacterial sepsis, protozoa, prions)
- o iron overload
- o graft versus host disease
- o post transfusion purpura =
 - \platelet count 5-7days post transfusion:
 - antibodies to platelet specific antigen
 - usually women who have been pregnant
 - need IV immunoglobulin & platelet transfusion
 - potentially fatal
- o immune modulation

Massive Transfusions

- >10 units in 24 hours or transfusion of entire circulating blood volume in 24hrs
- complications:
 - \circ citrate toxicity (= \downarrow Ca)
 - if t/f rate >1litre/10min ie 3units
 - tremor/tetany/ST & QT prolongation

- (note Ca level never low enough to contribute to bleeding)
- o ↑**K**:
 - only issue if v rapid, pt acidotic, hyperK already
 - . Give Ca, insulin/dextrose
- ↓clotting factors/platelets
 - esp low platelets & labile factors 5&8
 - .
- o hypothermia
 - drop 0.5degC/unit of blood unless warmer
 - temp leads to:
 - malignant arrhythmias
 - ↓DO2 via Bohr effect
 - aggravation of citrate toxicity
- \downarrow 2,3 DPG use of CPD-adenine \downarrow s problem as 2,3 \downarrow s slower
- o acidosis
- o or alkalosis citrate metabolised to bicarbonate
- o microaggregates: pulmon damage +/- ARDS
- o volume overload

Universal Leucodepletion

- bedside vs lab
 - o lab = better as better quality control, cost effective & hygiene
- blood passed through a filter 20-40um
- leucodepleted = wbcs $<5 \times 10^6/6$ units
- advantages:
 - o | febrile reactions
 - ↓sensitisation with human WBC antigens esp impt in bone marrow pts
 - ↓plts refractoriness
 - \rightarrow = <7 rise post 2 standard units
 - ↓/prevent CMV/NVCJD transmission
 - o possible:
 - ↓HTLV1+2 transmission
 - ↓immunomodulation
 - JTRALI
 - Jbacterial contamination
- disadvantages:
 - o loss of rbc & platelets
 - o release of bradykinin only an issue with bedside