

Practical Anaesthetics

Physiology of Pneumoperitoneum	2
CVS Effects	2
Resp Effects	2
GI Effects	2
Neuro Effects	2
Physiological Effects of Positioning	2
Supine	2
Lateral	3
Lithotomy	3
Prone	3
Reverse Trendelenburg	3
Seated	4
Trendelenburg	4
Ventilation Modes	5
Pressure & Volume Control	5
High Frequency Oscillatory Ventilation (HFOV)	6
SIMV	7
Adaptive Pressure Control (APC)	8
Adaptive Support Ventilation (ASV)	9
Proportional Assist Ventilation (PAV) & Pressure Support Vent (PSV)	9

Physiology of Pneumoperitoneum

- Insufflation of CO₂ to av max 20mmHg
- Once intrabdominal pressure (IAP) exceeds physiological thresholds see organ effects

CVS Effects

- ↑SVR:
 - Mechanical compression of abdo aorta
 - ↑release vasopressin and activation of renin-angiotensin-aldosterone axis
- ↓CO:
 - Compression of IVC ⇒ ↓VR ⇒ ↓preload ⇒ ↓CO
 - ↳ especially if hypovolaemic
 - Cephalad displacement of diaphragm ⇒ ↑intrathroacic pressure ⇒
 - ↓VR (as above)
 - Compression pulmonary vasculature ⇒ ↑RV afterload

Resp Effects

- ↑IAP ⇒ ↓diaphragmatic excursion ⇒
 - ↑intrathroacic pressure
 - ↓compliance
 - ↓FRC
 - Atelectasis
 - Altered VQ relationships
 - Hypoxaemia
- Absorbed CO₂ ⇒ ↑PCO₂ which is worsened by VQ mismatching

GI Effects

- ↓kidney & liver blood flow - especially in mod/severe organ disease states
 - ↳ IAP 20mmHg = ↓GFR ≈ 25%
 - ↳ Mechanism thought to be ↓afferent flow (2nd to low CO) & ↓efferent flow (high venous pressure)
- IAP persistently >20 = ↓40% blood flow to mesenteric & GI mucosa ⇒ ↑acidosis

Neuro Effects

- ↑ICP:
 - ↑IAP ⇒ ↑intrathroacic pressure ⇒ ↓cerebral venous drainage
 - ↳ despite ↑ed mean cerebral arterial pressure

Physiological Effects of Positionning

Supine

- Resp:
 - ↓FRC - abdo contents encroaching on diaphragm
 - ↑VQ mismatch
 - ↓pulmonary compliance
- CVS:
 - ↑VR from LL vasculature

- ± heart failure in borderline hearts
- +/-compression of IVC in obese/pregnant $\Rightarrow \downarrow\downarrow CO \text{ & } \downarrow\downarrow bp$
- GI:
 - ↑risk regurgitation
- Eye:
 - Risk of corneal drying in 10mins
- Nerve injury:
 - Supraorbital & facial nerve at risk from tube ties & FMs
 - Brachial plexus (esp C8, T1) - ↑ risk of injury when:
 - Arm abducted >90
 - Hand supinated
 - Head turned away
 - Ulnar nerve (>25% all nerve injuries) - in ulnar groove, medial epicondyle ($\hookrightarrow x3$ males > female)
- MSK:
 - Loss lumbar lordosis $\Rightarrow \uparrow$ chance LBP
 - Pressure sores - heels, occiput, sacrum

Lateral

- VQ mismatch - dependant lung vs non dependant lung
- Greatest amount of ocular complications:
 - Mostly corneal abrasions - either eye
- Nerve damage:
 - Brachial plexus - need good lateral support
 - Saphenous nerve & common peroneal - need padding between legs

Lithotomy

- Very similar to trendelenburg
- Hands and digits at the side of the patient - must be careful to avoid crush when replacing bottom of table
- Nerve damage - bilat flex of hip joints ≈
 - stretch sciatic & obturator nerves
 - Femoral nerve - direct compression under inguinal ligament
- Calf compression \Rightarrow VTE risk
- Compartment syndrome - mulitple causes of \downarrow perfusion pressure:
 - Weight of extremity against support $\Rightarrow \downarrow$ compartment capacity
 - Elevation above heart
 - \hookrightarrow stirups no better than combined calf support
 - \hookrightarrow length of op >5hrs main risk factor

Prone

- Must try and avoid pressure on abdo by good positioning
- Effective positionning can be positive physiologically (approx 70-80% see improvement initially)
 - \uparrow FRC
 - \downarrow VQ mismatch
- BUT position assoc with most MSK injuries:
 - Eye & nose
 - UL positions: small ant flex, abducted 90deg and ext rotation

Reverse Trendelenburg

- Beneficial physiological effects:

- ↑head & neck drainage
- ↓ICP
- ↓regurgitation
- Risks:
 - ↓bp
 - ↑risk venous air embolism

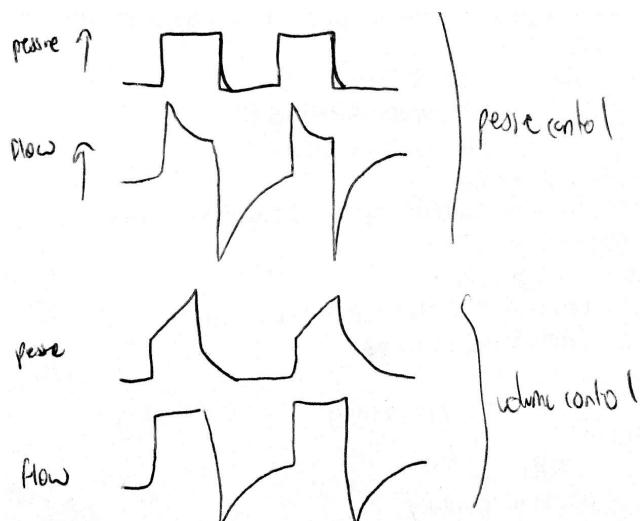
Seated

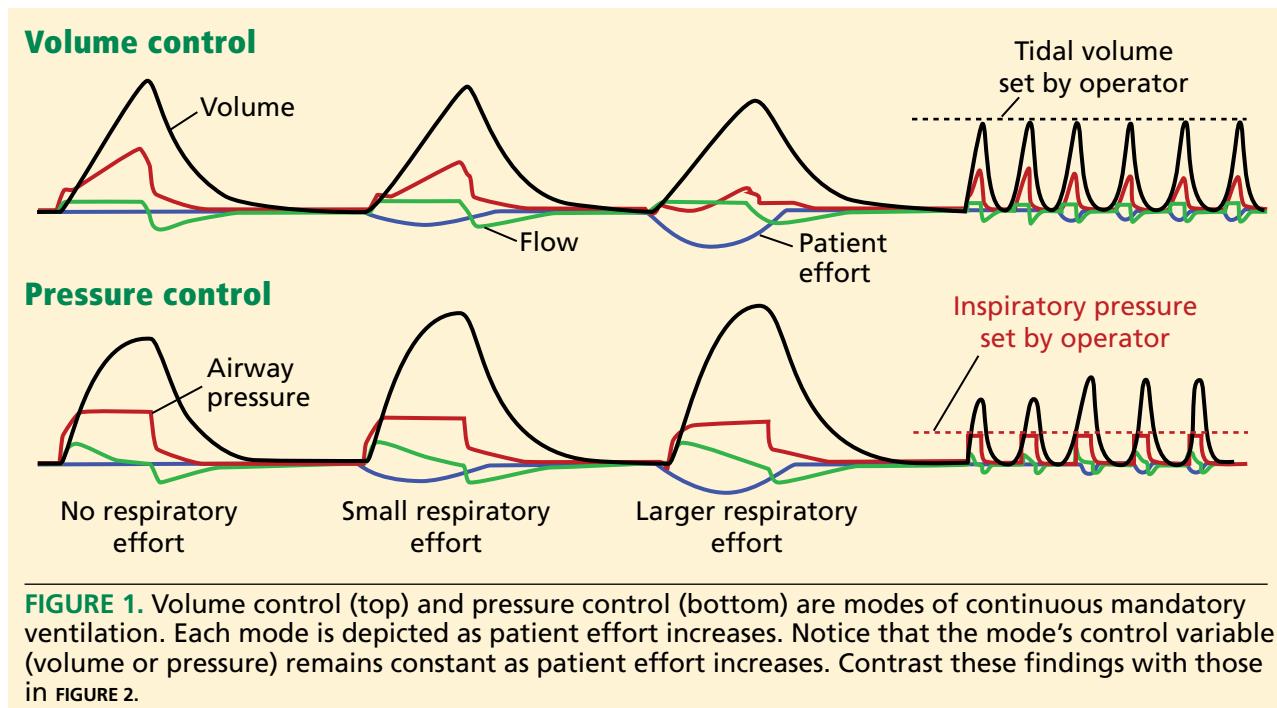
- Venous pooling into LLs & refractory hypotension
- Venous air embolism - esp during craniotomy:
 - Subatmospheric venous pressure & non collapsible dural sinuses

Trendelenburg

- Classic 45deg head down tilt
- CVS system
 - In healthy little long lasting effect due to quick compensation VD to overcome ↑VR
 - No RCT evidence to support trendelenburg position is of benefit in correcting acute ↓bp
 - In elderly or comorbidities with impaired vasomotor control may see ↑bp:
 - Capillaries and most of venous blood above heart
 - Incr VR \Rightarrow ↑preload \Rightarrow ↑stroke volume \Rightarrow ↑CO \Rightarrow ↑bp
 - ↳ effect is marked in
 - deep inhalation: -ve pressure vent \Rightarrow ↑-ve intrathoracic pressure
 - high spinal/anaesthesia - sympathetic blocking \Rightarrow ↑VD \Rightarrow ↑VR
- Possibility of ↓bp is also argued:
 - ↓VR 2nd to intraabdo and pelvic organs compressing IVC
- Risk of adverse consequences in people with comorbidities:
 - Obese
 - Compromised RV EF \Rightarrow R heart failure
 - Pulmonary disorders
 - Head injuries
- Well leg compartment syndrome - combination of:
 - ↓arterial perfusion to raised LLs
 - Compression of leg vessels by SCDs
 - ↓femoral drainage by +/- pneumoperitoneum
- Resp system:
 - Rased diaphragm with gravity and weight of abdo cavity organs:
 - ↓VC, ↓FRC, ↑risk basal atelectasis
 - ↳ 20deg head tilt = ↓VC by 15%
 - Hypercarbia 2nd to shunt
 - Incr VQ mismatch: ventilation maximal at bases, perfusion maximal at apex 2nd to gravity
 - Endobronchial intubation - northward movement of pt with fixed position of ETT \Rightarrow relative southwards migration of tip of ETT further into lungs
 - Upper airway oedema 2nd to orthostatic forces (prolonged positioning)
- Airway/Positioning:
 - Movement of pt with gravity causing soft tissue damage to lips on ETT and tie
 - Danger of patient falling from surg table
- Digestive system:

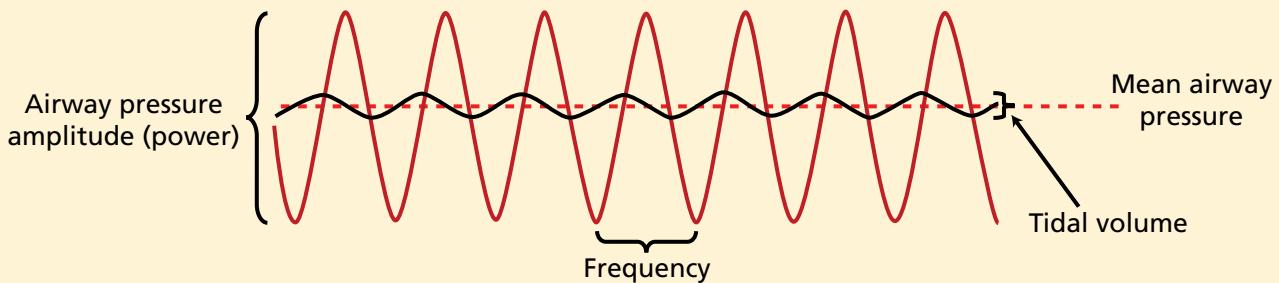
- Pooling of secretions in dependant part ie nasopharynx \Rightarrow ↑ risk laryngospasm if not suctionning pre extubation
- Increased risk of aspiration of gastric contents - if non secured airway
- Neuro:
 - Intra and extra cranial venous congestion \Rightarrow ↑ ICP
 - ↑ risk cerebral oedema
- Eye - ↑ intraocular pressure


Ventilation Modes


- Invasive:
 - mandatory:
 - pressure control
 - volume control
 - high flow oscillatory ventilation (HFOV)
 - intermittent mandatory (ie mixed mandatory & spontaneous):
 - volume - SIMV
 - pressure
 - Airway pressure release ventilation (APRV)
 - BPAP
 - Adaptive Pressure Control (APC)
 - ASV
 - Spontaneous ventilation
 - Pressure support ventilation (PSV)
 - proportional assist ventilation (PAV)
- non-invasive positive pressure ventilation (NIPPV):
 - CPAP
 - BiPAP

Pressure & Volume Control

- different variables changed by clinician as based on name
- pressure control theoretically may be able to recruit more alveoli for same max pressure
 - occurs because prolonged period of constant pressure
 - in volume control pressure ramps up as volume is delivered


Pressure/Time & Flow/Time Curves

High Frequency Oscillatory Ventilation (HFOV)

High-frequency oscillatory ventilation

FIGURE 5. High-frequency oscillatory ventilation delivers very small mandatory breaths (oscillations) at frequencies of up to 900 breaths per minute.

- = pressure controlled intermittent mandatory ventilation
- need special vent - to deliver constant oscillations 160-900 breath/min
- pt is paralysed & deeply sedated
- settings:
 - airway pressure amplitude
 - mean airway pressure
 - %insp
 - insp bias flow
 - Fio₂
- uses:
 - ARDS where conventional ventilation has failed
- avoid in ↑ICP/severe airflow obstruction
- benefits:
 - can provide the highest mean airway pressure with the lowest tidal volume of any mode
 - ↳ ie a true lung protection strategy

SIMV

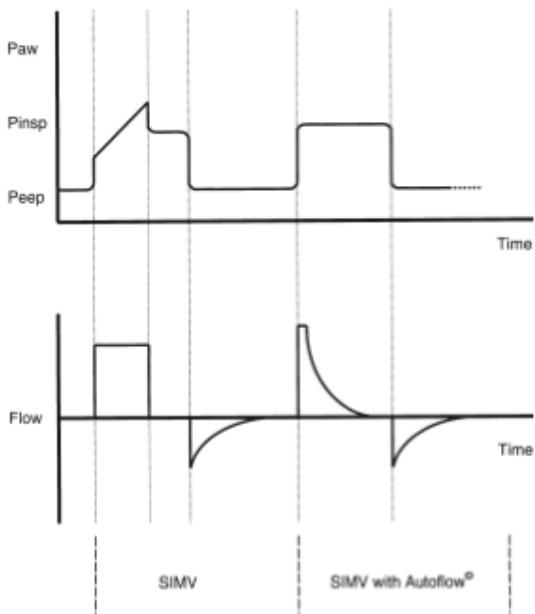


Fig. 2 SIMV and reduction in peak pressure with autoflow.

- intermittent set volume breaths
- these synchronised around the pts effort
- each mandatory vent breath has a preceding trigger window & if spont insp effort detected an assisted synchronised breath is triggered
- opposite to PCV - set volume with variable pressure
- autoflow = allows flow to be varied by pt. effectively becoming APC but with providing set volume rather than set average volume

Airway pressure release ventilation (APRV) & Biphasic Positive Airway Pressure (BPAP or BiPAP)

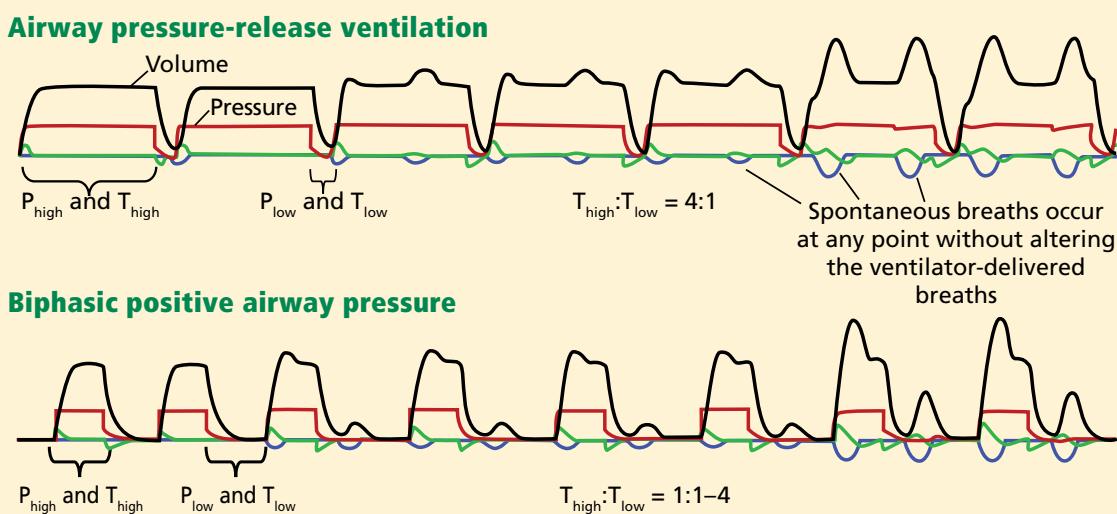
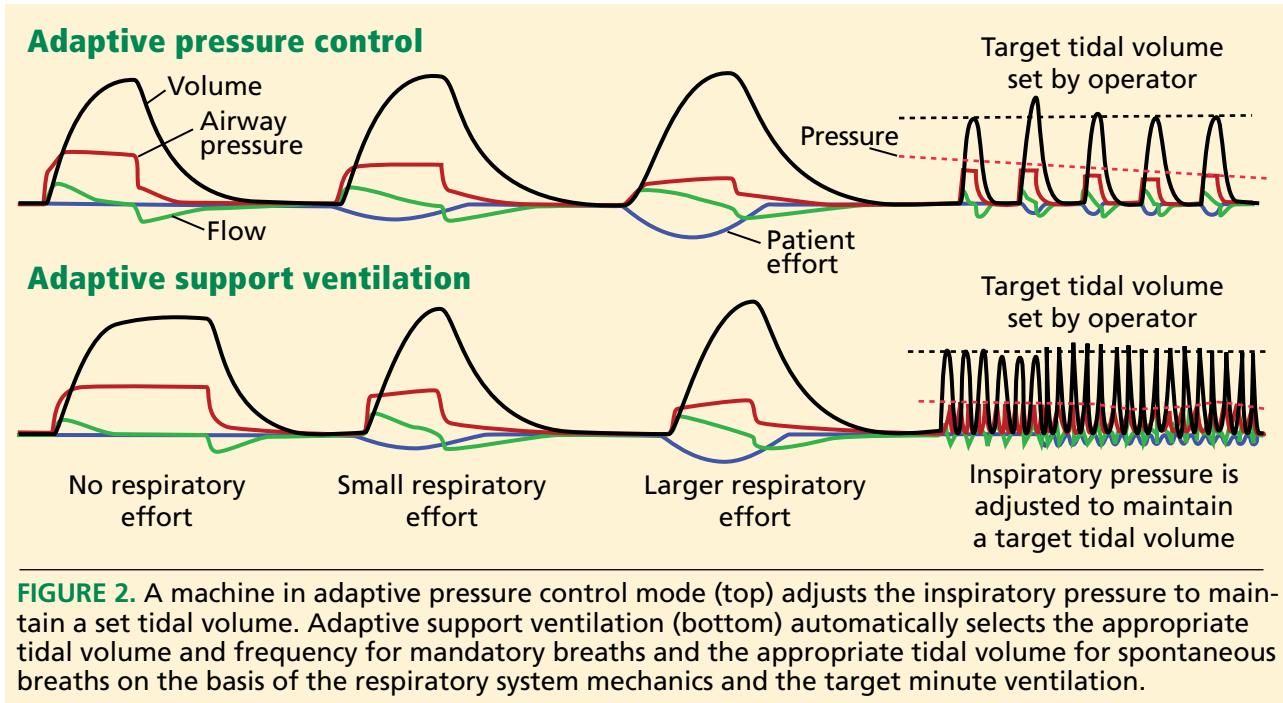



FIGURE 4. Airway pressure-release ventilation (top) and biphasic positive airway pressure (bottom) are forms of pressure-controlled intermittent mandatory ventilation in which spontaneous breaths can occur at any point without altering the ventilator-delivered breaths. The difference is that the time spent in high pressure is greater in airway pressure-release ventilation.

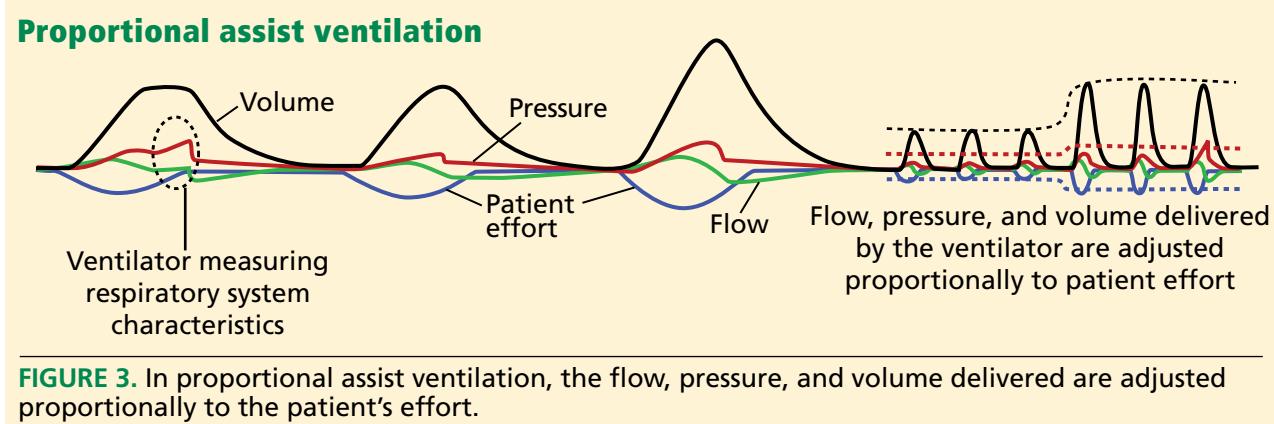
- set variable pressure
- deliver pressure controlled, time triggered, time cycles breaths
- pt able to take breaths at any time
- APRV = high +ve constant positive airway pressure with intermittent releases (exhalation)
 - variables =
 - $T_{low} < 1.5\text{sec}$ & T_{high}
 - ↳ diff between APRV & BPAP
 - ↳ effectively i:e ratio 4:1
 - P_{high} & P_{low}
 - pt usually breath on top if not paralysed contributing 10-40% to MV
 - concept =
 - \uparrow oxygenation
 - promotion of alveolar recruitment
 - \downarrow inflation pressures
 - \downarrow overinflation
 - improved VQ matching
 - uses:
 - ARDS
 - acute lung injury
- BPAP =
 - same concept as APRV but different emphasis on ratio of high to low pressure
 - ↳ ie more in line with normal breathing
 - variables:
 - T_{low} & T_{high} with i:e ratio more like 1:2
 - adv:
 - easier to take spont breaths at any time in cycle
 - better for weaning

Adaptive Pressure Control (APC)

- overcomes disadv of pressure control: this mode guarantees minimum minute ventilation despite changing lung mechanics/patient effort
- \therefore delivers pressure controlled breaths with adaptive targeting scheme:
 - changing insp pressure to target min V_t after a number of off target breaths
 - NB
 - not a volume control mode - the volume will change - hopefully the mean will be at target
 - flow speed will also change due to differing pressures - avoids asynchrony as seen in fixed flow volume control & pt spontaneous effort
- vent settings:
 - V_t
 - insp time
 - frequency
 - FiO_2
 - PEEP
- Uses:
 - maintenance of consistent V_t but with the advantages of pressure control - include pt taking spont breaths
 - \therefore weaning while waking from anaesthesia
- Advs:
 - flow synchrony
 - less vent manipulation from operator
 - automatic vent weaning

Adaptive Support Ventilation (ASV)

- provides mandatory minute ventilation with adaptive pressure control
- ASV automatically select best variables based on resp mechanics & target MV:
 - Vt
 - frequency of breathes
 - pressure support
 - ↳ ie what the brain would do
- machine variables:
 - height & weight ⇒ machine calculates MV 100% based on ideal weight & estimated dead space (2.2ml/kg)
 - PEEP
 - sex
 - FiO₂
- process:
 - machine gives test breaths & measures
 - expiratory time constant,
 - compliance,
 - resistance
 - target Vt then achieved by means of APC
- uses:
 - sole resp support from initial support to weaning


Proportional Assist Ventilation (PAV) & Pressure Support Vent (PSV)

Vent (PSV)

- features:
 - PSV = pressure rises to set level & held there until change of phase
 - PAV = pressure applied is a functional of pts effort
 - ↳ vent adjusts pressure breath to breath based on pts effort
- operator sets % of support to be delivered by vent

- breaths are completely spontaneous - but with a back up mode
- variables:
 - % work supported (5-95%)
 - Vt limit
 - pressure limit
 - exp sensitivity

Proportional assist ventilation

FIGURE 3. In proportional assist ventilation, the flow, pressure, and volume delivered are adjusted proportionally to the patient's effort.